• Title/Summary/Keyword: Cellular Space

Search Result 211, Processing Time 0.025 seconds

Similarity measures for trajectories of moving objects in cellular space (셀룰러 공간에 존재하는 이동객체 궤적의 유사성 측정)

  • Kang, Hye-Young;Kim, Joon-Seok;Hwang, Jung-Rae;Lee, Ki-Joune
    • Spatial Information Research
    • /
    • v.16 no.3
    • /
    • pp.291-301
    • /
    • 2008
  • While most GIS are based on Euclidean space, cellular space can be used as an alternative type of space for a large number of GIS applications. In order to analyze the pattern of moving objects in cellular space, we need new definitions of similarity between their trajectories since the trajectory in cellular space significantly differs from those in Euclidean space. In this paper, we study the properties of moving objects in cellular space. Based on these observations, we propose several similarity measures between trajectories in cellular space. We analyze the difference of the proposed measures by experiments.

  • PDF

A Hash Function Based on 2D Cellular Automata (이차원 셀룰라 오토마타에 기반하는 해쉬 함수)

  • Kim Jae-Gyeom
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.5
    • /
    • pp.670-678
    • /
    • 2005
  • A Cellular Automaton(CA) is a dynamical system in which space and time are discrete, the state of each cell is unite and is updated by local interaction. Since the characteristics of CA is diffusion and local interaction, CA is used by crypto-systems and VLSI structure. In this study, we proposed a hash function based on the concept of 2-dimensional cellular automata and analyzed the proposed hash function.

  • PDF

Conceptual Design of Life-Detecting Experiment for Future Europa Lander Mission

  • Park, Nuri;Yi, Yu
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.2
    • /
    • pp.111-117
    • /
    • 2018
  • A previous exo-terrestrial life-detecting experiment, which was conducted on Mars, sought to detect the products of glucose metabolism, the most common biological process on Earth (Viking biological experiment). Today, glucose metabolism is not considered the universal process of life survival. As NASA plans to launch an orbiter mission in the near future (2020s, the Clipper) and ultimately conduct a lander mission on Europa, a detection experiment that can give broader information regarding habitability is highly required. In this study, we designed a life-detecting experiment using a more universal feature of life, the amphipathic molecular membrane, theoretically considering the environment of Europa (waterdominant environment). This designed experiment focuses on finding and profiling hydrophobic cellular membrane-like microstructures. Expected results are given by conceptual data analysis with plausible hypothetical samples.

Optimal Shape Design of Space Truss Structure using Topology Optimization and Cellular Automata Model (위상최적화와 Cellular Automata 모델을 이용한 대공간 트러스 구조물의 최적형태 설계)

  • Kim, Ho-Soo;Lee, Min-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.1
    • /
    • pp.73-80
    • /
    • 2012
  • It is important to design the optimal shape in the initial process because the influences on the design and construction are large according to the shape and pattern of spatial structures. However, the existing optimal shape designs for spatial structure are performed by the designer's intuition and experiences. Therefore, this study proposes the integrated process using the topology optimization and cellular automata model. First, the initial optimal shapes are obtained by using the topology optimization, and then the spatial truss structural patterns are created through the application of cellular automata rules. Finally, the optimal shapes to satisfy the various design conditions are generated by the structural analysis and size optimization.

GENERALIZED BOUNDED ANALYTIC FUNCTIONS IN THE SPACE Hω,p

  • Lee, Jun-Rak
    • Korean Journal of Mathematics
    • /
    • v.13 no.2
    • /
    • pp.193-202
    • /
    • 2005
  • We define a general space $H_{{\omega},p}$ of the Hardy space and improve that Aleman's results to the space $H_{{\omega},p}$. It follows that the multiplication operator on this space is cellular indecomposable and that each invariant subspace contains nontrivial bounded functions.

  • PDF

Continuity of directional entropy for a class of $Z^2$-actions

  • Park, Kyewon-K.
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.573-582
    • /
    • 1995
  • J.Milnor[Mi2] has introduced the notion of directional entropy in his study of Cellular Automata. Cellular Automaton map can be considered as a continuous map from a space $K^Z^n$ to itself which commute with the translation of the lattice $Z^n$. Since the space $K^Z^n$ is compact, map S is uniformly continuous. Hence S is a block map(a finite code)[He]. (S is said to have a finite memory.) In the case of n = 1, we have a shift map, T on $K^Z$, and a block map S and they together generate a $Z^2$ action.

  • PDF

Smallest-Small-World Cellular Genetic Algorithms (최소좁은세상 셀룰러 유전알고리즘)

  • Kang, Tae-Won
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.11
    • /
    • pp.971-983
    • /
    • 2007
  • Cellular Genetic Algorithms(CGAs) are a subclass of Genetic Algorithms(GAs) in which each individuals are placed in a given geographical distribution. In general, CGAs# population space is a regular network that has relatively long characteristic path length and high clustering coefficient in the view of the Networks Theory. Long average path length makes the genetic interaction of remote nodes slow. If we have the population#s path length shorter with keeping the high clustering coefficient value, CGAs# population space will converge faster without loss of diversity. In this paper, we propose Smallest-Small-World Cellular Genetic Algorithms(SSWCGAs). In SSWCGAs, each individual lives in a population space that is highly clustered but having shorter characteristic path length, so that the SSWCGAs promote exploration of the search space with no loss of exploitation tendency that comes from being clustered. Some experiments along with four real variable functions and two GA-hard problems show that the SSWCGAs are more effective than SGAs and CGAs.

Technology Trends in Cellular-Based Low Earth Orbit Satellite Communications (셀룰러 기반 저궤도 위성통신 기술 동향)

  • J.S. Shin;Y.S. Hwang;H.D. Bae;J.W. Shin;S.M. Oh
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.2
    • /
    • pp.1-11
    • /
    • 2023
  • The recent explosion in the number of low earth orbit (LEO) satellites launched to space allows to easily anticipate that the number of satellites in orbit will sustain a dramatic increase. As satellite components are integrated and unified with terrestrial cellular networks, they will play a key role in providing coverage and resilience for future cellular networks. We provide a brief overview of typical scenarios and network architectures for cellular-based LEO satellite communication systems. In addition, we outline 3GPP standardization trends in non-terrestrial networks and satellite access based on 5G/5G Advanced systems and analyze future evolution prospects of cellular-based satellite communication systems.

Image Encryption Based on One Dimensional Nonlinear Group Cellular Automata (1차원 비선형 그룹 셀룰라 오토마타 기반의 영상 암호)

  • Choi, Un-Sook;Cho, Sung-Jin;Kim, Tae-Hong
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.12
    • /
    • pp.1462-1467
    • /
    • 2015
  • Pixel values of original image can be changed by XORing pixel values of original image and pixel values of the basis image obtained by pseudo random sequences. This is a simple method for image encryption. This method is an effect method for easy hardware implementation and image encryption with high speed. In this paper we propose a method to obtain basis image with pseudo random sequences with large nonlinearity using nonlinear cellular automata and maximum length linear cellular automata. And experimental results showed that the proposed image encryption scheme has large key space and low correlation of adjacent cipher pixel values.

Microbiological Contamination in Office Buildings by Work Space Structure (사무공간 구조에 따른 실내공기 중 생물학적 오염분포 특성)

  • Won, Dong-Hwan;Huh, Eun-Hae;Jeong, Ho-Chul;Moon, Kyong-Whan
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.3
    • /
    • pp.213-222
    • /
    • 2012
  • Objectives: This study was undertaken in order to evaluate by work space zoning and structure the concentrations of biological contaminants in the indoor air of domestic office buildings. Methods: Air samples were collected in the office spaces of 15 office buildings in Seoul from June 28 to July 28, 2011. Prior to the sampling, each office was classified into 'open-plan office', 'cellular office' and 'mixed office' according to the work space zoning. To evaluate the biological contamination of indoor air, total suspended bacteria (TSB), Gram positive bacteria (GPB), Staphylococcus aureus (S.A), Methicillin-resistant Staphylococcus aureus (MRSA), Gram negative bacteria (GNB) and fungi were investigated. During the sampling, temperature, relative humidity and carbon dioxide ($CO_2$) were measured. Results: The TSB concentrations ($GM{\pm}GSD$) were $452({\pm}1.3)cfu/m^3$ in open-plan offices, $366({\pm}1.3)cfu/m^3$ in cellular offices and $287({\pm}1.5)cfu/m^3$ in mixed offices, and there were significant differences between the three groups (p<0.05). The highest concentrations ($GM{\pm}GSD$) of fungi were found in the indoor air of cellular offices $128({\pm}1.0)cfu/m^3$, which was at least three times higher than the concentrations in mixed offices $43({\pm}1.0)cfu/m^3$ (p<0.05). Conclusions: Microbiological contamination in the indoor air of office buildings by work space structure was the highest with the open-plan office layout which includes no high walls or doors separating the occupants.