• Title/Summary/Keyword: Cellular Network

Search Result 939, Processing Time 0.029 seconds

Design of Amplify-and-Forward Helper Stations for Cellular Networks with Device-to-Device Links (단말 간 직접 통신을 포함하는 셀룰러 망을 위한 증폭 후 전달 방식 조력국의 설계 방법)

  • Chung, Jihoon;Kim, Donggun;Sung, Youngchul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.5
    • /
    • pp.539-545
    • /
    • 2016
  • In this paper, the use of an amplify-and-forward (AF) helper station in a cellular network with device-to-device (D2D) communication links is considered to enhance D2D rates and control the interference caused by D2D users to the cellular network. Two design criteria for the AF helper station are considered to improve the overall system quality-of-service (QoS). One is maximization of the worst D2D user rate under a constraint on interference caused by D2D users to the cellular network and the other is its dual, i.e., minimization of interference caused by D2D users to the cellular network with minimum rate guarantee for each D2D user. It is shown that the considered problems reduce to semi-definite programming (SDP) problems. Numerical results show that the proposed AF helper station significantly improves the system performance.

Performance Analysis of Call Admission Control Utilizing WLAN to Mitigate Congestion of Cellular Networks (WLAN을 이용한 셀룰러망 혼잡도 완화를 위한 호수락제어 성능 분석)

  • Seok, Woo-Jin;Hwang, Young-Ha;Noh, Sung-Kee;Kim, Sang-Ha
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.5
    • /
    • pp.425-436
    • /
    • 2008
  • In this paper, we propose a resource effective call admission control(CAC) in integrated WLAN and cellular network. The proposed CAC mitigates the congestion of cellular network by handing over non-realtime traffic to WLAN. We analyze the proposed CAC in numerical and simulation method. The simulation results show that the proposed CAC achieves better performance than normal CAC. Especially, the proposed CAC can sustain desired QoS more robustly against high incoming non-realtime traffic load than againt realtime traffic load.

Performance Analysis of Cellular IP using Combined Cache and Improved Adaptive Semi-soft Handoff Method (통합 캐시 및 개선된 적응형 세미소프트 핸드오프를 이용한 셀룰러 IP의 성능분석)

  • Choi Jung-Hun;Kim Nam;Jeong Seung-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.4 no.4
    • /
    • pp.113-121
    • /
    • 2004
  • Existing Cellular IP increases the network traffic load, packet loss and handoff latency because of duplicate packet. In this paper, we propose using a Combined Cache that unites a pasing cache with a routing cache and a Improved Adaptive Semi-soft handoff that minimizes to occur the duplicate packet. As a computer simulation, we consider packet loss, handoff latency and traffic load in network. In proportion the number of nodes, mobile hosts and downlinks of node in access network increased, the proposed method is largely improved in comparison with existing Cellular If that uses semi-soft handoff.

  • PDF

Capacity Improvement with Dynamic Channel Assignment and Reuse Partitioning in Cellular Systems

  • Chen Steven Li;Chong Peter Han Joo
    • Journal of Communications and Networks
    • /
    • v.8 no.1
    • /
    • pp.13-20
    • /
    • 2006
  • In cellular mobile communications, how to achieve optimum system capacity with limited frequency spectrum is one of the main research issues. Many dynamic channel assignment (DCA) schemes have been proposed and studied to allocate the channels more efficiently, thus, the capacity of cellular systems is improved. Reuse partitioning (RP) is another technique to achieve higher capacity by reducing the overall reuse distance. In this paper, we present a network-based DCA scheme with the implementation of RP technique, namely dynamic reuse partitioning with interference information (DRP-WI). The scheme aims to minimize the effect of assigned channels on the availability of channels for use in the interfering cells and to reduce their overall reuse distances. The performance of DRP-WI is measured in terms of blocking probability and system capacity. Simulation results have confirmed the effectiveness of DRP-WI scheme. Under both uniform and non-uniform traffic distributions, DRP-WI exhibits outstanding performance in improving the system capacity. It can provide about 100% capacity improvement as compared to conventional fixed channel assignment scheme with 70 system channels.

Signal Transduction Network Leading to COX-2 Induction: A Road Map in Search of Cancer Chemopreventives

  • Surh Young-Joon;Kundu Joydeb Kumar
    • Archives of Pharmacal Research
    • /
    • v.28 no.1
    • /
    • pp.1-15
    • /
    • 2005
  • Cancer is still a major global health concern even after an everlasting strive in conquering this dread disease. Emphasis is now given to chemoprevention to reduce the risk of cancer and also to improve the quality of life among cancer afflicted individuals. Recent progress in molecular biology of cancer has identified key components of the cellular signaling network, whose functional abnormality results in undesired alterations in cellular homeostasis, creating a cellular microenvironment that favors premalignant and malignant transformation. Multiple lines of evidence suggest an elevated expression of cyclooxygenase-2 (COX-2) is causally linked to cancer. In response to oxidative/pro-inflammatory stimuli, turning on unusual signaling arrays mediated through diverse classes of kinases and transcription factors results in aberrant expression of COX-2. Population-based as well as laboratory studies have explored a broad spectrum of chemopreventive agents including selective COX-2 inhibitors and a wide variety of anti-inflammatory phytochemicals, which have been shown to target cellular signaling molecules as underlying mechanisms of chemoprevention. Thus, unraveling signaling pathways regulating aberrant COX-2 expression and targeted blocking of one or more components of those signal cascades may be exploited in searching chemopreventive agents in the future.

A Study on the Number Recognition using Cellular Neural Network (Cellular Neural Network을 이용한 숫자인식에 관한 연구)

  • 전흥우;김명관;정금섭
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.6
    • /
    • pp.819-826
    • /
    • 2002
  • Cellular neural networks(CNN) are neural networks that have locally connected characteristics and real-time image processing. Locally connected characteristics are suitable for VLSI implementation. It also has applications in such areas as image processing and pattern recognition. In this thesis cellular neural networks are used for feature detection in number recognition at the stage of re-processing. The four or six directional shadow detectors are used in numbers recognition. At the stage of classification, this result of feature detection was simulated by using a multi-layer back Propagation neural network. The experiments indicate that the CNN feature detectors capture good features for number recognition tasks.

AAA System for PLMN-WLAN Internetworking

  • Janevski Toni
    • Journal of Communications and Networks
    • /
    • v.7 no.2
    • /
    • pp.192-206
    • /
    • 2005
  • Integration of mobile networks and Internet has started with 2.5 generation of mobile cellular networks. Internet traffic is today dominant traffic type worldwide. The hanger for higher data rates needed for data traffic and new IP based services is essential in the development of future wireless networks. In such situation, even 3G with up to 2 Mbit/s has not provided data rates that are used by Internet users with fixed broadband dial-up or through wired local area networks. The solution to provide higher bit rates in wireless access network has been found in wireless LAN although initially it has been developed to extend wired LAN into wireless domain. In this paper, we propose and describe a solution created for interoperability between mobile cellular network and WLAN. The integration between two networks, cellular and WLAN, is performed on the authentication, authorization, and accounting, i.e., AAA side. For that purpose we developed WLAN access controller and WLAN AAA gateway, which provide gateway-type access control as well as charging and billing functionalities for the WLAN service. In the development process of these elements, we have considered current development stadium of all needed network entities and protocols. The provided solution provides cost-effective and easy-to-deploy PLMN-WLAN Internetworking scenario.

Transmission Power Minimization with Network Coding for Mobile Terminals in Cellular Relay Networks

  • Du, Guanyao;Xiong, Ke;Li, Dandan;Qiu, Zhengding
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.9
    • /
    • pp.2098-2117
    • /
    • 2012
  • This paper jointly investigates the bandwidth allocation, transmission strategy and relay positions for two-way transmission aware cellular networks with network coding (NC). Our goal is to minimize the transmission power of mobile terminals (MTs). Consider a cellular system, where multiple MTs exchange information with their common base station, firstly, we propose an efficient bandwidth allocation method and then give a transmission strategy for each MT to determine whether to use relay stations (RSs) for its two-way transmission with the BS or not. To further improve the system performance, the optimal positions of RSs are also jointly discussed. A GA-based algorithm is presented to obtain the optimum positions for RSs. Besides, the impacts of frequency reuse on MT's transmission power and system spectral efficiency (SE) under different number of relays are also discussed in our work. Numerical results show that the proposed NC aware scheme can extend MTs' battery life at least 6% more than traditional method.

PSO-based Resource Allocation in Software-Defined Heterogeneous Cellular Networks

  • Gong, Wenrong;Pang, Lihua;Wang, Jing;Xia, Meng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2243-2257
    • /
    • 2019
  • A heterogeneous cellular network (HCN) is useful to increase the spectral and energy efficiency of wireless networks and to reduce the traffic load from the macro cell. The performance of the secondary user equipment (SUE) is affected by interference from the eNodeB (eNB) in a macro cell. To decrease the interference between the macro cell and the small cell, allocating resources properly is essential to an HCN. This study considers the scenario of a software-defined heterogeneous cellular network and performs the resource allocation process. First, we show the system model of HCN and formulate the optimization problem. The optimization problem is a complex process including power and frequency resource allocation, which imposes an extremely high complexity to the HCN. Therefore, a hierarchical resource allocation scheme is proposed, which including subchannel selection and a particle swarm optimization (PSO)-based power allocation algorithm. Simulation results show that the proposed hierarchical scheme is effective in improving the system capacity and energy efficiency.