• 제목/요약/키워드: Cellular Manufacturing System

검색결과 76건 처리시간 0.03초

셀형 유연조립시스템에서 작업부하 균형을 고려한 통합 배치설계에 관한 연구 (A Study on Even Distribution of Workloads Using Simulated Annealing Method on Integrated Layout Design in Cellular flexible Assembly Systems)

  • 정지용;노인규
    • 한국경영과학회지
    • /
    • 제23권4호
    • /
    • pp.63-73
    • /
    • 1998
  • With the success of flexible manufacturing systems(FMSs), flexible assembly systems(FASs) have been developed to automatic factories further. As in a cellular FMS, a celluar FAS is considered as the most flexible and feasible assembly systems configuration. This paper presents a method for the integrated layout design in cellular FASs. Unlike the traditional paper, this paper deals with the formation of cells and the layout of cells for jobs with operation times on different machines. The procedure in this paper consists of two distinct phases. The first phase presents machine arrangement in a double rows flowline. cell formation not to allow intercellular movements, and integrated layout design in cellular FASs considering the characteristics of FAS, layout, and production factors This phase uses older optimal algorithm. The second phase proposes to balance the system with an objective of reducing the degree of workload deviation in the cells. Simulated annealing method is used to balance the system. This phase also shows the integrated layout design in cellular FASs with the cost less than total cost of the first phase.

  • PDF

셀화 제조를 도입한 FMS에서 공구중복에 의한 예외적 요소의 제거 방법 (A Method of Eliminating Exceptional Elements by Tool Duplication in Cellular Manufacturing System.)

  • 장익;윤창원;정병희
    • 산업경영시스템학회지
    • /
    • 제20권44호
    • /
    • pp.297-309
    • /
    • 1997
  • Exceptional Elements(E.E) are generally eliminated by a machine duplication or a subcontract in cellular manufacturing system. One of the advantages in FMS consists of machines capable of multi-processing. This paper presents a method that eliminates E.Es by tool duplication. First, we develop the exceptional operation similarity(EOS) by machine cell-operation incidence matrix and part-operation incidence matrix. The EOS indicates a similarity of unperformable operations in each part when two exceptional parts are assigned to a machine cell. Secondly, a mathematical model to minimize tool duplication is developed by the EOS. Finally, a heuristic algorithm is developed to reflect dynamic situation in process of elimination of exceptional elements by the EOS and the mathematical model. A numerical example is provided to illustrate the algorithm.

  • PDF

그룹핑 효율증대를 위한 독립적 셀의 특성화 (Characterizing the Independent Cells by Increasing Grouping Efficiency)

  • 조문수;정병희
    • 대한산업공학회지
    • /
    • 제26권1호
    • /
    • pp.1-8
    • /
    • 2000
  • We extended a minimum spanning tree algorithm (Cho et al., 1997) by characterizing the mutually independent cells with maximizing the grouping efficiency referring to few propositions developed by Shu, 1990 in cellular manufacturing system. Each row of the machine-part incidence matrix is regarded as a node in a graph, and a distance function is defined for every pair of nodes. It shows that there are K mutually independent cells in the cellular manufacturing system if only if there are K-1 arcs of length 1 in the minimum spanning tree of the graph, and gives an effective policy for sub-cell formation from larger cells.

  • PDF

Network 분석과 신경망을 이용한 Cellular 생산시스템 설계 (Network Analysis and Neural Network Approach for the Cellular Manufacturing System Design)

  • 이홍철
    • 대한산업공학회지
    • /
    • 제24권1호
    • /
    • pp.23-35
    • /
    • 1998
  • This article presents a network flow analysis to form flexible machine cells with minimum intercellular part moves and a neural network model to form part families. The operational sequences and production quantity of the part, and the number of cells and the cell size are taken into considerations for a 0-1 quadratic programming formulation and a network flow based solution procedure is developed. After designing the machine cells, a neural network approach for the integration of part families and the automatic assignment of new parts to the existing cells is proposed. A multi-layer backpropagation network with one hidden layer is used. Experimental results with varying number of neurons in hidden layer to evaluate the role of hidden neurons in the network learning performance are also presented. The comprehensive methodology developed in this article is appropriate for solving large-scale industrial applications without building the knowledge-based expert rule for the cellular manufacturing environment.

  • PDF

The Design of an Intelligent Assembly Robot System for Lens Modules of Phone Camera.

  • Song, Jun-Yeob;Lee, Chang-Woo;Kim, Yeong-Gyoo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.649-652
    • /
    • 2005
  • The camera cellular phone has a large portion of cellular phone market in recent year. The variety of a customer demand makes a fast model change and the spatial resolution is changed from VGA to multi-mega pixel. The 1.3 mega pixel (MP) camera cellular phone was first released into the Korean market in October 2003. The major cellular phone companies released a 2MP camera cellular phone that supports zoom function and a 2MP camera cellular phone is settled down with the Korea cellular phone market. It makes a keen competition in price and demands automation for phone camera module. There is an increasing requirement for the automatic assembly to correspond to a fast model change. The hard automation techniques that rely on dedicated manufacturing system are too inflexible to meet this requirement. Therefore in this study, this system is designed with the flexibility concept in order to cope with phone camera module change. The system has a same platform that has X-Y-Z motion or X-Z motion with ${\mu}m$order accuracy. It has a special gripper according to the type of a component to be put together. If the camera model changes, the gripper may be updated to fit for the camera module. The controller of this system acquires the data sets that have the information about the assembly part by the tray. This information is obtained ahead of an inspection step. The controller excludes an inferior part to be assembled by using this information to diminish the inferior goods. The assembly jig used in this system has a function of self adjustment that reduces the tact time and also diminish the inferior goods. Finally, the intelligent assembly system for phone camera module will be designed to get a flexibility to meet model change and a high productivity with a high reliability.

  • PDF

셀 형태의 생산 시스템의 유연성 측정 모형 (Flexibility Measurement Model for Cellular Manufacturing Systems)

  • 정은경;전태보;김영휘
    • 대한산업공학회지
    • /
    • 제19권3호
    • /
    • pp.91-102
    • /
    • 1993
  • This paper suggests an approach to quantitative evaluation of a manufacturing flexibility in automated manufacturing systems. The flexibility of a cell is newly defined and evaluated in use of the environmental change factors which may influence flexibility for satisfying a manufacturing performance objective. The number of machines, the number of operations, machine breakdowns and processing times are considered for this cell flexibility measure. The cell flexibility measures the extent that the cell utilizes the processes to acquire high throughput. Simulation program written in SLAM System was used to help measure cell flexibility. The proposed cell flexibility measure provides a prediction of the influence of the factors on throughput performance, and applies in case of comparison of existing system and a new system, changes in operation conditions of a cell, and comparison of rival machines. Therefore it can be used as decision making criteria for system justification.

  • PDF

퍼지 비선형 혼합정수계획에 의한 제조셀 형성 (-Manufacturing Cell Formation with Fuzzy Nonlinear Mixed-Integer Programming-)

  • 윤연근;남현우;이상완
    • 산업경영시스템학회지
    • /
    • 제23권54호
    • /
    • pp.65-75
    • /
    • 2000
  • Cellular manufacturing(CM) is a philosophy and innovation to improve manufacturing productivity and flexibility. Cell formation(CF), the first and key problem faced in designing an effective CM system, is a process whereby parts with similar design features or Processing requirements are grouped into part families, and the corresponding machines into machine cells. Cell formation solutions often contain exceptional elements(EEs). EE create interactions between two manufacturing cells. A policy dealing with EEs considers minimizing the total costs of three important costs; (1)intercellular transfer (2)machine duplication and (3)subcontracting. This paper presents an effective cell formation method with fuzzy nonlinear mixed-integer programming simultaneously to form manufacturing cells and to minimize the total costs of eliminating exceptional elements.

  • PDF

기계중복비용과 공간제약을 고려한 예외적 요소의 최소화 알고리듬 (An Algorithm for Minimizing Exceptional Elements Considering Machine Duplication Cost and Space Constraint in Cellular Manufacturing System)

  • 장익;정병희
    • 산업공학
    • /
    • 제12권1호
    • /
    • pp.10-18
    • /
    • 1999
  • Job shop manufacturing environments are using the concept of cellular manufacturing systems(CMS) which has several advantages in reducing production lead times, setup times, work-in-process, etc. Utilizing the similarities between cell-machine, part-machine, and the shape/size of parts, CMS can group machines and parts resulting in improved efficiency of this system. However, when grouping machines and parts in machine cells, there inevitably occurs exceptional elements(EEs), which can not operate in the same machine cell. Minimizing these EEs in CMS is a critical point that improving production efficiency. Constraints in machine duplication cost, machining process technology, machining capability, and factory space limitations are main problems that prevent achiving the goal of maintaining an ideal CMS environment. This paper presents an algorithm that minimizes EEs under the constraints of machine duplication cost and factory space limitation. Developing exceptional operation similarity(EOS) by cell-machine incidence matrix and part-machine incidence matrix, it brings the machine cells that operate the parts or not. A mathematical model to minimize machine duplication is developed by EOS, followed by a heuristic algorithm in order to reflect dynamic situation resulting from minimizing exceptional elements process and the mathematical model. A numerical example is provided to illustrate the algorithm.

  • PDF

초소형 렌즈 모듈의 조립 자동화를 위한 지능형 민첩 생산시스템 (Agile and Intelligent Manufacturing System for a Subminiature Lens Assembly Automation)

  • 김원;강희석;조영준;정지영
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.169-172
    • /
    • 2005
  • Tiny camera module using in modern cellular phone requires precise assembly processes. Higher camera resolution and more functions such as zoom lens make the number of camera parts bigger. As market grows rapidly, automatic assembly process is required. However, diverse product line and short life cycle make it difficult. To attack this, a flexible and expandable lens assembly system is proposed. For the fast manufacturing line formation, modular concept is adopted. Also each module is designed to have intelligence to save system formation time. The assembly system is built up on the standard flat-form which provides vibration free base, air and electric supply, controllers, etc. Futhermore, the assembly cell has the capability of handling tiny, thin, or transparent parts which are very difficult to align with vision.

  • PDF