• Title/Summary/Keyword: Cellular Flow Motion

Search Result 11, Processing Time 0.023 seconds

Experimental Study of Natural Convection Due to Combined Buoyancy in a Rectangular Enclosure (직각 밀폐용기내의 복합부력에 의한 자연대류에 관한 실험적 연구)

  • 이진호;현명택
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.2
    • /
    • pp.247-256
    • /
    • 1986
  • An experimental investigation was conducted to study natural convection due to temperature and concentration differences between the two opposite end walls of a rectangular enclosure of aspect ratio 0.2. Flow motion in the enclosure appears as a uni-cell flow pattern for the relatively lower concentration and higher temperature differences and vice versa, while it appears as a multicell flow pattern for the comparable temperature and concentration differences. In the multi-cell flow regime, when the cellular flow motiion is very slow, vertical temperature differences within the cells are negligible while the vertical concentration differences are large. In addition, both the temperature and concentration differences are negligible across the interface between the slowly moving cells. For the fast moving cellular flow motion, on thel contrary, vertical temperature differences within the cells are large while the vertical concentration differences are negligible. In this case, temperature differences are negligible and the concentration differences are large across the interface between the fase moving cells.

Numerical Simulation of Blood Cell Motion in a Simple Shear Flow

  • Choi, Choeng-Ryul;Kim, Chang-Nyung;Hong, Tae-Hyub
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1487-1491
    • /
    • 2008
  • Detailed knowledge on the motion of blood cells flowing in micro-channels under simple shear flow and the influence of blood flow is essential to provide a better understanding on the blood rheological properties and blood cell aggregation. The microscopic behavior of red blood cell (RBCs) is numerically investigated using a fluid-structure interaction (FSI) method based on the Arbitrary-Lagrangian-Eulerian (ALE) approach and the dynamic mesh method (smoothing and remeshing) in FLUENT (ANSYS Inc., USA). The employed FSI method could be applied to the motions and deformations of a single blood cell and multiple blood cells, and the primary thrombogenesis caused by platelet aggregation. It is expected that, combined with a sophisticated large-scale computational technique, the simulation method will be useful for understanding the overall properties of blood flow from blood cellular level (microscopic) to the resulting rheological properties of blood as a mass (macroscopic).

  • PDF

Minimal Turning Path Planning for Cleaning Robots Employing Flow Networks (Flow Network을 이용한 청소로봇의 최소방향전환 경로계획)

  • Nam Sang-Hyun;Moon Seungbin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.9
    • /
    • pp.789-794
    • /
    • 2005
  • This paper describes an algorithm for minimal turning complete coverage Path planning for cleaning robots. This algorithm divides the whole cleaning area by cellular decomposition, and then provides the path planning among the cells employing a flow network. It also provides specific path planning inside each cell guaranteeing the minimal turning of the robots. The minimal turning of the robots is directly related to the faster motion and energy saving. The proposed algorithm is compared with previous approaches in simulation and the result shows the validity of the algorithm.

Detection of Optical Flows on the Trajectories of Feature Points Using the Cellular Nonlinear Neural Networks (셀룰라 비선형 네트워크를 이용한 특징점 궤적 상에서 Optical Flow 검출)

  • Son, Hon-Rak;Kim, Hyeong-Suk
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.37 no.6
    • /
    • pp.10-21
    • /
    • 2000
  • The Cellular Noninear Networks structure for Distance Transform(DT) and the robust optical flow detection algorithm based on the DT are proposed. For some applications of optical flows such as target tracking and camera ego-motion computation, correct optical flows at a few feature points are more useful than unreliable one at every pixel point. The proposed algorithm is for detecting the optical flows on the trajectories only of the feature points. The translation lengths and the directions of feature movements are detected on the trajectories of feature points on which Distance Transform Field is developed. The robustness caused from the use of the Distance Transform and the easiness of hardware implementation with local analog circuits are the properties of the proposed structure. To verify the performance of the proposed structure and the algorithm, simulation has been done about various images under different noisy environment.

  • PDF

Measurement of Inward Turbulent Flows in a Rotating with Square Cross-Section $90^{\circ}$ Duct (회전하는 정사각단면 $90^{\circ}$ 곡덕트 내 내향 난류유동 측정)

  • Kim, Dong-Chul;Chun, Kun-Ho;Choi, Young-Don
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.627-632
    • /
    • 2000
  • Developing turbulent flows in a rotating 90 degree bend with square cross-section were measured by a hot-wire anemometer. The six orientation hot-wire technique was applied to measured the distributions of 3 mean velocities and 6 Reynolds stress components. Effects of Coriolis and centrifugal forces caused by the curvature and rotation of bend on the mean motion and turbulence structures were experimentally investigated Productive addition of Coriolis and centrifugal forces to the outward radial direction in the entrance region of bend increases the secondary flow intensity according to the rotational speeds. However, after 45 degree of bend, centrifugal force due to the rotation of bend may promote the break down of counter rotating vortex pair into multi-cellular pattern, thereby decreasing the production rate of turbulence energy and Reynolds stresses.

  • PDF

Development of an integrative cardiovascular system model including cell-system and arterial network (세포-시스템 차원의 혈류역학적 심혈관 시스템 모델의 개발)

  • Shim, Eun-Bo;Jun, Hyung-Min
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.542-546
    • /
    • 2008
  • In this study, we developed a whole cardiovascular system model combined with a Laplace heart based on the numerical cardiac cell model and a detailed arterial network structure. The present model incorporates the Laplace heart model and pulmonary model using the lumped parameter model with the distributed arterial system model. The Laplace heart plays a role of the pump consisted of the atrium and ventricle. We applied a cellular contraction model modulated by calcium concentration and action potential in the single cell. The numerical arterial model is based upon a numerical solution of the one-dimensional momentum equations and continuity equation of flow and vessel wall motion in a geometrically accurate branching network of the arterial system including energy losses at bifurcations. For validation of the present method, the computed pressure waves are compared with the existing experimental observations. Using the cell-system-arterial network combined model, the pathophysiological events from cells to arterial network are delineated.

  • PDF

Multi-directional Pedestrian Model Based on Cellular Automata (CA기반의 다방향 보행자 시뮬레이션 모형개발)

  • Lee, Jun;Bae, Yun-Kyung;Chung, Jin-Hyuk
    • International Journal of Highway Engineering
    • /
    • v.12 no.4
    • /
    • pp.11-16
    • /
    • 2010
  • Various researches have been performed on the topic of pedestrian traffic flow. At the beginning, the modeling and simulation method for the vehicular traffic flow was simply applied to pedestrian traffic flow. Recently, CA based simulation models are frequently applied to pedestrian flow analysis. Initially, the square Lattice Model is a base model for applying to pedestrians of counterflow and then Hexagonal Lattice Model improves its network as a hexagonal cell for more realistic movement of the avoidance of pedestrian conflicts. However these lattice models express only one directional movement because they express only one directional movement. In this paper, MLPM (the Multi-Layer Pedestrian Model) is suggested to give various origins and destinations for more realistic pedestrian motion in some place.

Laboratory Experiment of Two-layered fluid in a Rotating Cylindrical container (원통형 이층유체의 회전반 실험)

  • 나정열;최진영
    • 한국해양학회지
    • /
    • v.28 no.1
    • /
    • pp.17-23
    • /
    • 1993
  • A right cylindrical tank with sloping bottom and top (${\beta}-effect$) is filled with two-layered fluid and is put on the rotating table. External fluid of same density as the lower-layer fluid is continuously injected to drive the lower-layer current. By minimizing the interfacial stress between two layers the motion in the lower-layer deformed the shape of interface such that the upper-layer adjust itself to the variations of the interface in terms of its direction of flow patterns .The most significant parameter is the internal Froude Number($F_1$) and when $F_1$ is greater than 6 two-cellular circulation of the upper-layer changes its direction, there by creates a separation of Western boundary current. The separation position moves to the most northward when $F_1$ equals to 6.

  • PDF

Ride comfort of the bridge-traffic-wind coupled system considering bridge surface deterioration

  • Liu, Yang;Yin, Xinfeng;Deng, Lu;Cai, C.S.
    • Wind and Structures
    • /
    • v.23 no.1
    • /
    • pp.19-43
    • /
    • 2016
  • In the present study, a new methodology is presented to study the ride comfort and bridge responses of a long-span bridge-traffic-wind coupled vibration system considering stochastic characteristics of traffic flow and bridge surface progressive deterioration. A three-dimensional vehicle model with 24 degrees-of-freedoms (DOFs) including a three-dimensional non-linear suspension seat model and the longitudinal vibration of the vehicle is firstly presented to study the ride comfort. An improved cellular automaton (CA) model considering the influence of the next-nearest neighbor vehicles and a progressive deterioration model for bridge surface roughness are firstly introduced. Based on the equivalent dynamic vehicle model approach, the bridge-traffic-wind coupled equations are established by combining the equations of motion of both the bridge and vehicles in traffic using the displacement relationship and interaction force relationship at the patch contact. The numerical simulations show that the proposed method can simulate rationally the ride comfort and bridge responses of the bridge-traffic-wind coupled system; and the vertical, lateral, and longitudinal vibrations of the driver seat model can affect significantly the driver's comfort, as expected.

Vertical vibrations of a bridge based on the traffic-pavement-bridge coupled system

  • Yin, Xinfeng;Liu, Yang;Kong, Bo
    • Earthquakes and Structures
    • /
    • v.12 no.4
    • /
    • pp.457-468
    • /
    • 2017
  • When studying the vibration of a suspension bridge based on the traffic-bridge coupled system, most researchers ignored the contribution of the pavement response. For example, the pavement was simplified as a rigid base and the deformation of pavement was ignored. However, the action of deck pavement on the vibration of vehicles or bridges should not be neglected. This study is mainly focused on establishing a new methodology fully considering the effects of bridge deck pavement, probabilistic traffic flows, and varied road roughness conditions. The bridge deck pavement was modeled as a boundless Euler-Bernoulli beam supported on the Kelvin model; the typical traffic flows were simulated by the improved Cellular Automaton (CA) traffic flow model; and the traffic-pavement-bridge coupled equations were established by combining the equations of motion of the vehicles, pavement, and bridge using the displacement and interaction force relationship at the contact locations. The numerical studies show that the proposed method can more rationally simulate the effect of the pavement on the vibrations of bridge and vehicles.