• Title/Summary/Keyword: Cellular Attachment

Search Result 108, Processing Time 0.033 seconds

The Effect of Platelet-Rich Plasma on the Cellular Attachment of Osteoblast Cell Line (혈소판농축혈장이 조골세포주의 세포부착에 미치는 영향에 대한 연구)

  • Jung, Tae-Wook;Jang, Kyung-Soo;Kim, Chang-Whe;Kim, Yung-Soo
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.19 no.4
    • /
    • pp.281-290
    • /
    • 2003
  • Platelet-rich plasma which is made with the newly developed technique concentrating platelets 3-folds or more is also proven to be very effective method to stimulate and accelerate the healing of bone and soft tissue. This study is aimed to investigate the effect of platelet-rich plasma on the attachment of osteoblast. To evaluate the effect on human, human osteoblast cell line was cultured. Platelet-rich plasma was extracted from the blood of a healthy volunteer. The effect on the attachment was evaluated by MTT assay. To evaluate autocrine and paracrine effect on osteoblast, conditioned medium was made and compared with platelet-rich plasma. By western blot analysis, the expression of fibronectin and vitronectin in experimental groups was examined. The results were as following: The cellular attachment of osteoblast cell line increased depending on the concentration of platelet-rich plasma and conditioned medium. The amount of increasing was similar between two groups. The expression of fibronectin and vitronectin in platelet-rich plasma and conditioned medium is more than control group in western blot analysis. These findings imply that platelet-rich plasma enhance the cellular attachment by inducing fibronectin, vitronectin from osteoblast and maximize the cellular attachment by using the autocrine and paracrine effect of platelet-rich plasma.

THE EFFECTS OF NICOTINE ON HUMAN GINGIVAL FIBROBLAST & PERIODONTAL LIGAMENT CELLS IN VITRO (니코틴이 배양인체 치은섬유모세포 및 치주인대세포의 활성에 미치는 효과)

  • Kong, Young-Hwan;Yoo, Hyung-Keun;Shin, Hyung-Shik
    • Journal of Periodontal and Implant Science
    • /
    • v.25 no.2
    • /
    • pp.181-191
    • /
    • 1995
  • The ability of fibroblasts attach to teeth is of paramount imporance in re-establishing the lost connective tissue attachment after periodontal therapy. Tobacco contains a complex mixture of substances including nicotine. various nitrousamines, trace elements. and a variety of poorly characterized substances. The effects of nicotine on fibroblasts have reported an altered morphology and attachment of fibroblasts to substrates and disturbances in protein synthesis and secretion. This study examined the effect of nicotine, a major component of the particulate phase of tobacco smoke, on human gingival fibroblasts and periodontal ligament cells attachment to tissue culture surfaces and cellular activity of human gingival fibroblasts and periodontal ligament cells. Pooled human gingival fibroblasts made from extraction of 3rd molar were utilized between passage 4 and 5 and plated in 96 well plate at 20,000 cells per well. Cell number were determined using 3-(4,5-dimethylthiazole-2-y)2,5-diphenyltetrazolium bromide(MTI) , which is reflection of mitochondrial dehydrogenase activity. The concentration of nicotine used were 0.025, 0.05, 0.1, 0.2 and $0.4{\mu}M$, the average serum concentration for a smoker being approximately $0.1{\mu}M$. The results were as follows : 1. Attachment effects of nicotine on human gingival fibroblasts and periodontal ligament cells Excepts of $0.4{\mu}M$, the effects on attachment with increasing numbers of cells attaching with increasing nicotine concentrations, compared to control group. But over the 60min, return to control value. 2. The effect of cellular activity on human gingival fibroblasts and periodontal ligament cells. The cellular activity of human gingival fibroblasts and periodontal ligament cells were similar or decrease to control value at 1st incubation day. At 2nd incubation day, 0.05, 0.1, 0.2, $0.4{\mu}M$ concentrations were statistically different from control value on gingival fibroblasts group. But at 3rd incubation day, cellular activities of all experimental group were significantly decrease than control group.

  • PDF

THE EFFECTS OF FIBRONECTIN & GROWTH FACTOR ALONE OR COMBINED APPLICATION ON THE ACTIVITY OF GHUMAN GINGIVAL FIBROBLASTS AND PERIODONTAL LIGAMENT CELLS (Fibronectin과 성장인자의 단독 혹은 복합투여가 배양 인체 치은섬유모세포 및 치은인대세포의 활성에 미치는 효과)

  • Kim, Eung-Tae;Han, Du-Seok;Yoo, Hyung-Keun;Shin, Hyung-Shik
    • Journal of Periodontal and Implant Science
    • /
    • v.25 no.2
    • /
    • pp.239-251
    • /
    • 1995
  • The selective migration, attachment and proliferation of periodontal ligament cells are the desired goal of periodontal regeneration therapy. Fibronectin is well known for an attachment protein for dentin surface. Also, Fibroblast growth factor (FGF) is well known to enhance the periodontal regeneration. The purpose of this study was to evaluation the effect of fibronection and FGF on the attachment rate and the cellular activity. Human gingival fibroblast and periodontal ligament cells were cultured from the teeth extracted for non-periodontal reson. Cultured human gingival fibroblast and periodontal ligament cells in vitro were treated with fibronectin and FGF a various dosage and culture times. Cellular activity was examined by MTT assay. The results of this study was demonstrated that cell attachment rate of experimental group was under the control value at 1st, 2nd, 3rd incubation day. But, at 3rd incubation day, attchment value tended to return to the control value. In case of fibronectin alone application, cellular activity was decreased than that of control at 1st, 2nd incubation day. But 3rd day, cellular activity was returned to the control value. The activity of gingival fibroblast in FGF alone application was decreased thatn that of control at each incubation day. But activity of periodontal cell group was increased cell activities at 2nd, 3rd day. Additionally cellular activity of fibronectin & FGF combined application on gingival fibroblast group was similar to control value at incubation day. But activity of periodontal ligament cell group was increased at 2nd, 3rd day compared with control group.This study demonstrated that combined application of fibronectin & FGF induced the selective chemotaxis for periodontal ligament cell in vitro.

  • PDF

THE EFFECT OF GROWTH FACTORS IN PLATELET-RICH PLASMA ON THE ACTIVITY OF OSTEOBLAST CELL LINE (혈소판농축혈장 내의 성장요소가 조골세포주의 활성도에 미치는 영향)

  • Jung Tae-Wook;Kim Yung-Soo;Kim Chang-Whe;Jang Kyung-Soo;Lim Young-Jun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.2
    • /
    • pp.175-191
    • /
    • 2004
  • Statement of problem: Platelet-rich plasma(PRP) is well known to be very effective method to stimulate and accelerate the healing of bone and soft tissue. However, there are few reports which deal with the mechanisms of the PRP on the activation of the osteoblasts. Purpose: This study was aimed to investigate the effect of growth factors in PRP on the activity of osteoblasts. Material and method: To evaluate the effect on human, human osteoblast cell line was cultured. PRP was extracted from the blood of a healthy volunteer. Using the recombinant growth factors of PDGF, $TGFT-\beta$, IGF-1, bFGF which are mainly found at bone matrix and their neutralizing antibody, the effect of PRP on the attachment and proliferation of osteoblasts was evaluated. To evaluate the autocrine and paracrine effects, conditioned media(CM) of PRP was made and compared with PRP. By the western blot analysis, the expression of growth factors in PRP, CM was examined. Cell morphology was compared by the light microscope. Results : 1) The effects of CM on osteoblast were similar to the effects of PRP. 2) PRP, CM, recombinant $TGF-\beta$, bFGF, IGF-1 showed significantly higher cellular attachment than control(p<0.05) in the cell attachment assay. In the cell proliferation assay, PRP, CM, recombinant $TGF-\beta$, IGF-1, bFGF, PDGF increased significantly cell proliferation(p<0.01). Among the recombinant growth factors, IGF-1 showed the highest cellular attachment and proliferation. 3) In the western blot assay, bFGF, IGF-1, PDGF weve equally expressed in PRP and CM. 4) The attachment of osteoblast cell decreased significantly after the addition of neutralizing antibody against $TGF-\beta$, IGF-1(p<0.05). In the cell proliferation assay, the addition of neutralizing antibody against $TGF-\beta$, bFGF, PDGF, IGF-1 decreased significantly the cellular proliferation(p<0.05). The amount of decreasing in the cell attachment and proliferation is the highest in at-lGF-1. 5) The cells in control group were flattened and elongated with a few cellular processes in the a light microscope. But, the cells appeared as spherical, plump cells with well developed cellular processes in experimental groups. The cells in PRP and CM had more prominent developed features than recombinant growth factor groups. Conclusions : These findings imply that PRP maximize the cellular activity in early healing period using the synergistic effect, autocrine, paracrine effects of growth factors and increase the rate and degree of bone formation.

Cellular viability and genetic expression of human gingival fibroblasts to zirconia with enamel matrix derivative ($Emdogain^{(R)}$)

  • Kwon, Yong-Dae;Choi, Hyun-Jung;Lee, Heesu;Lee, Jung-Woo;Weber, Hans-Peter;Pae, Ahran
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.5
    • /
    • pp.406-414
    • /
    • 2014
  • PURPOSE. The objective of this study was to investigate the biologic effects of enamel matrix derivative (EMD) with different concentrations on cell viability and the genetic expression of human gingival fibroblasts (HGF) to zirconia surfaces. MATERIALS AND METHODS. Immortalized human gingival fibroblasts (HGF) were cultured (1) without EMD, (2) with EMD $25{\mu}g/mL$, and (3) with EMD $100{\mu}g/mL$ on zirconia discs. MTT assay was performed to evaluate the cell proliferation activity and SEM was carried out to examine the cellular morphology and attachment. The mRNA expression of collagen type I, osteopontin, fibronectin, and TGF-${\beta}1$ was evaluated with the real-time polymerase chain reaction (RT-PCR). RESULTS. From MTT assay, HGF showed more proliferation in EMD $25{\mu}g/mL$ group than control and EMD $100{\mu}g/mL$ group (P<.05). HGFs showed more flattened cellular morphology on the experimental groups than on the control group after 4h culture and more cellular attachments were observed on EMD $25{\mu}g/mL$ group and EMD $100{\mu}g/mL$ group after 24h culture. After 48h of culture, cellular attachment was similar in all groups. The mRNA expression of type I collagen increased in a concentration dependent manner. The genetic expression of osteopontin, fibronectin, and TGF-${\beta}1$ was increased at EMD $100{\mu}g/mL$. However, the mRNA expression of proteins associated with cellular attachment was decreased at EMD $25{\mu}g/mL$. CONCLUSION. Through this short term culture of HGF on zirconium discs, we conclude that EMD affects the proliferation, attachment, and cell morphology of HGF cells. Also, EMD stimulates production of extracellular matrix collagen, osteopontin, and TGF-${\beta}1$ in high concentration levels. CLINICAL RELEVANCE. With the use of EMD, protective barrier between attached gingiva and transmucosal zirconia abutment may be enhanced leading to final esthetic results with implants.

Wettability and cellular response of UV light irradiated anodized titanium surface

  • Park, Kyou-Hwa;Koak, Jai-Young;Kim, Seong-Kyun;Heo, Seong-Joo
    • The Journal of Advanced Prosthodontics
    • /
    • v.3 no.2
    • /
    • pp.63-68
    • /
    • 2011
  • PURPOSE. The object of this study was to investigate the effect of UV irradiation (by a general commercial UV sterilizer) on anodized titanium surface. Surface characteristics and cellular responses were compared between anodized titanium discs and UV irradiated anodized titanium discs. MATERIALS AND METHODS. Titanium discs were anodized and divided into the following groups: Group 1, anodized (control), and Goup 2, anodized and UV irradiated for 24 hours. The surface characteristics including contact angle, roughness, phase of oxide layer, and chemical elemental composition were inspected. The osteoblast-like human osteogenic sarcoma (HOS) cells were cultured on control and test group discs. Initial cellular attachment, MTS-based cell proliferation assay, and ALP synthesis level were compared between the two groups for the evaluation of cellular response. RESULTS. After UV irradiation, the contact angle decreased significantly (P<.001). The surface roughness and phase of oxide layer did not show definite changes, but carbon showed a considerable decrease after UV irradiation. Initial cell attachment was increased in test group (P=.004). Cells cultured on test group samples proliferated more actively (P=.009 at day 2, 5, and 7) and the ALP synthesis also increased in cells cultured on the test group (P=.016 at day 3, P=.009 at day 7 and 14). CONCLUSION. UV irradiation induced enhanced wettability, and increased initial cellular responses of HOS cells on anodized titanium surface.

A Study of the Effect of Platelet-Rich Plasma on the Cellular Proliferation and Differentiation of Osteoblast Cell Line (혈소판농축혈장이 조골세포주의 세포증식 및 분화에 미치는 영향에 대한 연구)

  • Jung, Tae-Wook;Jang, Kyung-Soo;Kim, Chang-Whe;Kim, Yung-Soo
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.20 no.1
    • /
    • pp.31-41
    • /
    • 2004
  • The osseointegration in implant therapy is achieved following general wound healing mechanism. Platelet play a major role in wound healing process. In addition to blood clot formation, they secrete many growth factors which regulate the attachment, proliferation and differentiation of nearly all cell types. The use of these growth factors is now known to be very effective methods to improve the cellular activity. Platelet-rich plasma which is made with the newly developed technique concentrating platelets 3-folds or more is also proven to be very effective method to stimulate and accelerate the healing of bone and soft tissue. Previous study proved that platelet-rich plasma enhanced the cellular attachment by inducing fibronectin, vitronectin from osteoblast. So, this study was aimed to investigate the effect of platelet-rich plasma on the cellular proliferation and differentiation in vitro. The effect on the proliferation was evaluated by MTT assay. To evaluate autocrine and paracrine effect, conditioned medium was made and compared. By measuring alkaline phosphatase activity, the effect on the cellular differentiation was evaluated. The results were as following: The cellular proliferation of osteoblast cell line increased depending on the concentration of platelet-rich plasma and conditioned medium. The alkaline phosphatase activity increased depending on the concentration of platelet-rich plasma and conditioned medium. These findings imply that platelet-rich plasma enhance the cellular proliferation and differentiation and maximize the cellular activity by using the autocrine and paracrine effect.

Structural Changes of Adhesive Discs during Attachment of Boston Ivy

  • Kim, InSun
    • Applied Microscopy
    • /
    • v.44 no.4
    • /
    • pp.111-116
    • /
    • 2014
  • This study investigates the developmental pattern of adhesive discs (ADs) to highlight the ontogeny and structural changes that occur during the growth of Boston ivy. Initiation to postmortem features of ADs were examined through light and scanning electron microscopy. The study also reveals a new finding of the dislocation of peripheral tissues of adaxial origin. Four phases of attachment are suggested with regards to its climbing behavior: 1) pre-attachment, 2) upon attachment, 3) after attachment, and 4) final attachment. During initiation, several ADs originate from tendril primordia without epidermal differentiation. However, different growth rates in the epidermis results in completely different ADs. ADs were discerned by size, shape, and color during expansion, but cells in the adaxial surface remained alive longer than the other side. Upon contact, the ADs demonstrate simultaneous growth and deterioration, but once attachment is established the latter process subdues to final stages. Epidermal transformation, adhesive secretion, cellular disruption, and mechanical stress were essential for the self-clinging nature of Boston ivy. The post-attachment sequence is also believed to be critical in achieving maximum mechanical strength to provide extensive support. The developmental process of ADs is prompted by tactile stimulation but in a highly organized and systematic manner.

Monocyte Attachment and Migration through Collagen IV in Diabetes Mellitus

  • Kostidou, Elena;Koliakos, George;Paletas, Konstantinos;Kaloyianni, Martha
    • Molecules and Cells
    • /
    • v.25 no.3
    • /
    • pp.452-456
    • /
    • 2008
  • The interactions between monocytes and extracellular matrix proteins have been implicated in atherosclerosis pathophysiology. In the present study we evaluated monocyte attachment and migration through oxidized and non-oxidized collagen IV. Monocyte attachment was tested on microwells coated with either native or oxidized collagen IV. Monocyte migration through collagen IV was examined on transwells. Monocytes derived from patients with diabetes mellitus showed an increased ability to attach and migrate through collagen IV as compared to those derived from healthy volunteers. Moreover, control monocytes attached to oxidized collagen at a higher degree, while they migrated through oxidized collagen at a lower degree, as compared to the native protein. Our results also showed the involvement of the alpha2 integrin subunit in the above phenomena suggesting a modified interaction between monocytes and collagen IV in diabetes mellitus.

In vitro biocompatibility of a cement compositecontaining poly ($\varepsilon$-caprolactonemicrosphere) (PCL)

  • Jyoti, Md. Anirban;Min, Young-Ki;Lee, Byong-Taek;Song, Ho-Yeon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.42.1-42.1
    • /
    • 2009
  • In recent years, it has been tried to develop the efficacy and bioactivity of Calcium Phosphate cements(CPC) as injectable bone substitute (IBS) by reinforcing them through varying the amount in its compositions and relative concentrations or adding other additives. In this study, the biocompatibility of are inforced Calcium Phosphate-Calcium Sulfate injectable bone substitute (IBS)containing poly ($\varepsilon$-caprolactone)PCL microspheres was evaluated which consisted of solution chitosan and Na-citrate as liquid phase and tetra calcium phosphate (TTCP), dicalciumphosphate anhydrous (DCPA) powder as the solid phase. The in vitrobiocompatibility of the IBS was done using MTT assay and Cellular adhesion and spreading studies. The in vitro experiments with simulated body fluid (SBF) confirmed the formation of apatite on sample surface after 7 and 14 days of incubation in SBF. SEM images for one cell morphologies showed that the cellular attachment was good. MG-63 cells were found to maintain their phenotype on samples and SEM micrograph confirmed that cellular attachment was well. In vitro cytotoxicity tests by an extract dilution method showed that the IBS was cytocompatible for fibroblast L-929.

  • PDF