• Title/Summary/Keyword: Cellobiose

Search Result 177, Processing Time 0.024 seconds

Factors Influencing Biohydrogenation and Conjugated Linoleic Acid Production by Mixed Rumen Fungi

  • Nam, In-Sik;Garnsworthy, Philip C.
    • Journal of Microbiology
    • /
    • v.45 no.3
    • /
    • pp.199-204
    • /
    • 2007
  • The objective of this study was to evaluate the effect of soluble carbohydrates (glucose, cellobiose), pH (6.0, 6.5, 7.0), and rumen microbial growth factors (VFA, vitamins) on biohydrogenation of linoleic acid (LA) by mixed rumen fungi. Addition of glucose or cellobiose to culture media slowed the rate of biohydrogenation; only 35-40% of LA was converted to conjugated linoleic acid (CLA) or vaccenic acid (VA) within 24 h of incubation, whereas in the control treatment, 100% of LA was converted within 24 h. Addition of VFA or vitamins did not affect biohydrogenation activity or CLA production. Culturing rumen fungi at pH 6.0 slowed biohydrogenation compared with pH 6.5 or 7.0. CLA production was reduced by pH 6.0 compared with control (pH 6.5), but was higher with pH 7.0. Biohydrogenation of LA to VA was complete within 72 h at pH 6.0, 24 h at pH 6.5, and 48 h at pH 7.0. It is concluded that optimum conditions for biohydrogenation of LA and for CLA production by rumen fungi were provided without addition of soluble carbohydrates, VFA or vitamins to the culture medium; optimum pH was 6.5 for biohydrogenation and 7.0 for CLA production.

Studies on the Cellulolytic Enzymes Produced by Ganoderma lucidum in Synthetic Media (합성배지(合成培地)에서 불로초(不老草)가 생산(生産)하는 섬유소(纖維素) 분해효소(分解酵素)에 관한 연구(硏究))

  • Hong, Jae-Sik;Choi, Yoon-Hee;Yun, Se-Eok
    • The Korean Journal of Mycology
    • /
    • v.14 no.2
    • /
    • pp.121-130
    • /
    • 1986
  • Factors affecting the productivity of cellulolytic enzymes and the mycelial growth of Ganoderma lucidum CAFM 9065 were examined in synthetic media. Among the carbon sources tested, Na-CMC was the best for the production of avicelase CMC ase, and cellobiose for ${\beta}-glucosidase$. Soluble starch and cellobiose were the best for the mycelial growth. The optimum concentration of Na-CMC for the production of the enzymes was 1.0 %, and mycelial growth increased remarkably with the higher concentration of Na-CMC. Glucose inhibited the production of the enzymes, but stimulated the mycelial growth. Among the nitrogen sources used, peptone was the most effective for the production of the enzymes, and the appropriate concentration of peptone was 0.2%. The mycelial growth was stimulated with the increase of the concentration of peptone up to 0.5%. The optimum concentration of $KH_2PO_4$ for the production of the enzymes and mycelial growth was 0.3 and 0.2%, respectively. The optimum concentration of $MgSO_4{\cdot}7H_2O$ for the production of the enzymes and mycelial growth was 0.02%. The production of the enzymes was facilitated by folic acid at a low concentration (0.03 mg/l), and mycelial growth by inositol. The optimum temperature for the production of the enzymes and mycelial growth was $30^{\circ}C$. The optimum pH for the production of avicelase and ${\beta}-glucosidase$ was 5.0 equally and CMCase 5.5. The activities of avicelase and CMCase were the highest at 8 and 10 days of culture, respectively and that of ${\beta}-glucosidase$ at 16 day culture. The growth of mycelium was the highest at 12 days of culture at pH 5.0.

  • PDF

Medium Optimization for Fibrinolytic Enzyme Production by Bacillus subtilis MG410 Isolated (Bacillus subtilis MG410에 의한 Fibrin 분해효소 생산배지의 최적화)

  • Lee Ju-Youn;Paek Nam-Soo;Kim Young-Man
    • The Korean Journal of Food And Nutrition
    • /
    • v.18 no.1
    • /
    • pp.39-47
    • /
    • 2005
  • Using the bacteria isolated from Chungkookjang, Bacillus sublilis MG410 which is excellent in fibrinolytic enzyme activity was isolated. In increase the high production of fibrinolytic enzyme from Bacillus sublilis MG410, the effect of various carbon sources, nitrogen sources, inorganic sources, the initial pH of medium were investigated. The most effective carbon and nitrogen sources were founded cellobiose 0.5%(w/v) and soybean meal 2%(w/v) respectively. None of inorganic sources examined had any detectable stimulating effect on fibrinolytic enzyme production except Na₂HPO₄·12H₂O. The initial optimum pH for fibrinolytic enzyme production ranged from 5∼6 and agitation speed was effect at 150rpm. In jar fermentor experiments under optimal culture conditions, the activity of fibrinolytic enzyme reached about 5.050 unit after 48hours.

Cloning of $\beta$-glucosidase gene from Cellulomonas sp. into E.coli

  • Kim, Ha-Geun;Kim, Hoon;Park, Moo-Young
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1986.12a
    • /
    • pp.525.1-525
    • /
    • 1986
  • To clone ${\beta}$-glucosidase gene from Cellulomonas sp. a gene library was constructed using E. coli JM83 pUC9. Among 2,500 pseudotransformants obtained, 20 clones developed yellow color on the p-nitrophenyl- -D-glucopyranoside filter paper These 20 clones were classified into three groups based on the results of activity staining using nondenaturating polyacrylamide gel electrophoresis and restriction enzyme digestions. Among the three groups, only one group containing pCEl plasmid has specificity for cellobiose.

  • PDF

Production of Polysaccharide by the Edible Mushroom, Grifola frondosa

  • Kim, Yeon-Ran
    • Mycobiology
    • /
    • v.31 no.4
    • /
    • pp.205-208
    • /
    • 2003
  • The production of polysaccharide according to various developmental stages(mycelium growth, primordium appearance, and fruiting-body formation) in the edible mushroom Grifola frondosa was studied. The cap of the mature mushroom showed the highest amount of polysacchride. Mycelial growth and polysaccharide synthesis were optimal at pH 5 and $20^{\circ}C$. Polysaccharide synthesis was maximal after 12 days of cultivation, whereas maximum mycelial growth was shown after 18 days. Mannose, cellobiose and starch increased the level of polysaccharide as well as growth in submerged culture. Glucose and sucrose appeared to be good substrates for fruiting of Grifola frondosa.

Partial Characterization of Bacillus thuringiensis var. kurstaki Temperature-sensitive Mutants (Bacillus thringiensis var. kurstaki 감온성 돌연변이주의 일부특성)

  • 김영권;유관희;이형환;이호원
    • Korean Journal of Microbiology
    • /
    • v.23 no.3
    • /
    • pp.203-208
    • /
    • 1985
  • Partial characterization of B. thuringiensis var. kurstaki 3ab temperature-sensitive mutants was carried out through biochemical analyses, utilization tests of carbohydrate sources, antobiotic resistant test, hemolytic reaction test, growth measurement of Fructus gardenia sxtrant medium and toxicity test against mice. Six ts mutants, ts-U154, ts-U601, ts-U602, ts-U603, tsU-604, and ts-U788 could not produce urease, ts-U603 lost its motility, ts-U154 could not use salicin and cellobiose and ts-U603 not ribose. All ts mutants except ts-U154 and wild type strain were resistant to cephalothin, ampicillin, and penicillin. but ts-U154 was sensitive to the three. Four mutants, ts-U21, ts-U74, ts0U131 and ts-U154 did not form pigment colonies on the F. gardenia medium. All the mutants and wild type strain showed hemolysis reaction on the blood agar. The B. thuringiensis and mutants were not toxic to mice.

  • PDF

Purification and Characterization of High-Molecular-Weight $\beta$-Glucosidase from Trichoderma koningii (Trichoderma koningii가 생성하는 고분자량 $\beta$-glucosidase의 정제 및 특성)

  • 맹필재;정춘수;하영칠;홍순우
    • Korean Journal of Microbiology
    • /
    • v.24 no.3
    • /
    • pp.251-262
    • /
    • 1986
  • High-molecular-weight ${\beta}-glucosidase$ (EC 3.2.1.21) was purified from the culture filtrate of Trichoderma koningii through a four-step procedure including chromatography on Bio-Gel P-150, DEAE-Sephadex A-50 and SP-Sephadex C-50; and chromatofocusing on Polybuffer exchanger PBE 94. The molecular weight of the enzyme was determined to be about 101,000 by SDS-polyacrylamide gel electrophoreses, and the isoelectric point was estimated to be 4.96 by analytical isoelectric focusing. The temperature optimum for activity was about $55^{\circ}C$, and the pH optimumwas 3.5. The enzyme was considerably thermostable, for no loss of activity was observed when the enzyme was preincubated at $60^{\circ}C$ for 5h. Km values for cellobiose, gentiobiose, sophorose, salicin and $p-nitrophenyl-{\betha}-D-glucoside$ were 99.2, 14.7, 7.09, 3.15 and 0.70 mM, respectively, which indicates that the enzyme has much higher affinity towards $p-nitrophenyl-{\betha}-D-glucoside$ than towards the other substrates, especially cellobiose. Substrate inhibition by $p-nitrophenyl-{\betha}-D-glucoside$ and salicin was observed at the conecntrations exceeding 5mM. Gluconolactone was a powerful inhibitor against the action of the enzyme on $p-nitrophenyl-{\betha}-D-glucoside\;(K_i\;37.9\;{\mu}M)$, wherease glucose was much less effective ($K_i$ 1.95 mM). Inhibition was of the competitive type in each case. Transglucosylation activity was detected shen the readtion products formed from $p-nitrophenyl-{\betha}-D-glucoside$ by the enzyme were analysed using high-performance liquid chromatography.

  • PDF

Identification and Antifungal Antagonism of Chryseomomas luteola 5042 against Phytophthora capsici (고추역병균 Phytophthora capsici의 생육을 저해하는 Chryseomonas luteola 5042의 선발과 항진균성 길항작용)

  • 윤경현;이은탁;김상달
    • Microbiology and Biotechnology Letters
    • /
    • v.29 no.3
    • /
    • pp.186-193
    • /
    • 2001
  • A powerful antagonistic bacterium against Phytophthora capsici causing phytophthora blight of red pepper was isolated from the cultivated soil in Kyongju Korea, The bilogical control mechanisms of the isolated strain were caused by strong antifungal antibiotic, siderophore and cellulase. The strain was identified as Chryseomonas luteola by the cultural morphological and physiological characteristics. The opti- mal culture medium for the antibiotic production was determined as follows : 0.15%D(+) cellobiose, 0.55% $NH_4$CI, 0.01% KCI 0.7% $K_2$$HPO_4$ 0.2% $KH_2$PO$_4$ and 0.5% sodium citrate at pH 7.0 The optimal incubation time was 84 hours at $30^{\circ}C$ In pot bioassay, the treatment of C luteola 5042 protected red pepper plant against the blight of Phytophthora capsici.

  • PDF

Bioethanol Production from Rice straw by Irpex consors (송곳니구름버섯을 이용한 볏짚에서의 에탄올 생산)

  • Choi, Yu Ha;Park, Jeong Hong;Lee, Tae Soo
    • Journal of Mushroom
    • /
    • v.13 no.2
    • /
    • pp.85-91
    • /
    • 2015
  • This study was initiated to evaluate ethanol production by a Korean isolate of white rot fungus Irpex consors. It was found that the fungus could produce ethanol by converting glucose, mannose, xylose, and cellobiose under semi-aerobic condition with yields of 0.23, 0.19, 0.21, and 0.17 g ethanol per g sugars, respectively. Furthermore, the strain produced ethanol by simultaneous saccharification and fermentation of rice straw treated with steam pressured boiling water, 3% NaOH, and 3% $H_2SO_4$ with maximum yields of 0.12, 0.15, and 0.19 g ethanol per g rice straw, respectively. These results suggested that I. consors could produce ethanol from the components of cellulose and hemicellulose including glucose, mannose, xylose, cellobiose as well as rice straw treated with steam pressured boiling water, dilute sodium hydroxide, and dilute sulfuric acid. This is the first report that I. consors mycelia produce ethanol from various sugars and lignocellulosic substance including rice straw.

Purification and Characterization of ${\beta}-Glucosidase$ from Penicillium verruculosum

  • Chun, Soon-Bai;Kim, Dong-Ho;Kim, Kang-Hwa;Chung, Ki-Chul
    • Journal of Microbiology and Biotechnology
    • /
    • v.1 no.3
    • /
    • pp.188-196
    • /
    • 1991
  • The ${\beta}-glucosidase$ was purified to homogeneity from the culture filtrate of P. verruculosum by column chromatography. The enzyme was a glycoprotein with a relative size of approximately 220 kDa with an isoelectric point of 4.8, which was composed of dimeric protein of 105 kDa. The enzyme was stable up to $60^{\circ}C$ and the presence of glycerol significantly increased its thermostability. The enzyme was found to hydrolyze both ${\beta}-aryl$ and ${\beta}-alkyl-glucosides$ in addition to ${\beta}-glucosyl$ glucose and catalyzed glucosyl transfer to cellobiose. The enzyme attacked laminarin in an exotype-like fashion. The apparent Km's of the enzyme toward cellobiose, laminaribiose, laminarin were 0.53 mM, 0.35 mM and 1.11 mM, respectively. Glucose and glucono-${\delta}-lactone$ were competitive inhibitors for the enzyme. Copper ($Cu^{2+}$), mercury ($Hg^{2+}$) and p-chloromercuribenzoate were strong inhibitors of the enzyme. The immunoblotting result revealed that one form of ${\beta}-glucosidase$ was biosynthesized, irrespective of carbon sources used. Polyacrylamide gel electrophoresis analysis of the in vitro translated product of total RNA from avicel grown mycelium established that the P. verruculosum ${\beta}-glucosidase$ precursor was approximately 95 kDa in size. The amino acid composition and N-terminal amino acid sequence are given.

  • PDF