• Title/Summary/Keyword: Cellobiose

Search Result 178, Processing Time 0.025 seconds

Cloning and Expression of Cyclodextrin Glycosyltransferase Gene from Paenibacillus sp. T16 Isolated from Hot Spring Soil in Northern Thailand

  • Charoensakdi, Ratiya;Murakami, Shuichiro;Aoki, Kenji;Rimphanitchayakit, Vichien;Limpaseni, Tipaporn
    • BMB Reports
    • /
    • v.40 no.3
    • /
    • pp.333-340
    • /
    • 2007
  • Gene encoding cyclodextrin glycosyltransferase (CGTase), from thermotolerant Paenibacillus sp. T16 isolated from hot spring area in northern Thailand, was cloned and expressed in E. coli (JM109). The nucleotide sequences of both wild type and transformed CGTases consisted of 2139 bp open reading frame, 713 deduced amino acids residues with difference of 4 amino acid residues. The recombinant cells required 24 h culture time and a neutral pH for culture medium to produce compatible amount of CGTase compared to 72 h culture time and pH 10 for wild type. The recombinant and wild-type CGTases were purified by starch adsorption and phenyl sepharose column chromatography and characterized in parallel. Both enzymes showed molecular weight of 77 kDa and similar optimum pHs and temperatures with recombinant enzyme showing broader range. There were some significant difference in pH, temperature stability and kinetic parameters. The presence of high starch concentration resulted in higher thermostability in recombinant enzyme than the wild type. The recombinant enzyme was more stable at higher temperature and lower pH, with lower $K_m$ for coupling reaction using cellobiose and cyclodextrins as substrates.

Effect of Superoxide Dismutase and Low Molecular Mediators on Lignin Degradation

  • Leonowicz, Andrzej;Matuszewska, Anna;Luterek, Jolanta;Ziegenhagen, Dirk;Wojtas-Wasilewska, Maria;Hofrichter, Martin;Rogalski, Jerzy;Cho, Nam-Seok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.1-14
    • /
    • 1999
  • As the biodegradation of wood constituents has been understood as a multi-basidiomycetes and enzymatic processes, this review will focus on the roles of low molecular compounds and radicals working in harmony with fungal enzymes. Wood rotting basidiomycete fungi penetrate wood, and lead to more easily metabolize carbohydrates of the wood complex. The white-rot fungi, having versatile enzymes, are able to attack directly the "lignin barrier". They also use a multi-enzyme system including so-called "feedback" type enzymes allowing for simultaneous degradation of lignin and carbohydrates. The multi-enzymes including laccase support the proposed route by explaining how the high molecular weight enzymes can function in the wood complex. These enzymes may function separately or cooperate each other. In addition, veratryl alcohol oxidase, cellobiose dehydrogenase, arylalcohol dehydrogenase, and particularly low molecular mediators and radicals have an important role in wood biodegradation. However, the possibility of other mechanism as well as other enzymes, as operating as feedback systems in the process of wood degradation, could not be excluded.

  • PDF

Enzymes of White-rot Fungi Cooperate in Biodeterioration of Lignin Barrier (목질리그닌의 생물학적 분해시 백색 부후균류 효소들의 상호작용)

  • Leonowicz, Andrzej;Cho, Nam-Seok;Wasilewska, Maria W.;Rogalski, Jerzy;Luterek, Jolanta
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.1-20
    • /
    • 1997
  • 목재를 분해시키는 담자균류들은 목재 및 목질복합체에 쉽사리 침투하여 복잡한 리그노셀룰로오스 복합체를 분해시킨다. 이러한 분해에는 많은 효소시스템들이 복합적으로 작용하면서 상호 협동하는 것으로 보고되고 있다. 지금까지 일려진 효소들은 통상 3개의 그룹으로 나눌 수 있는데 그 하나는 목재성분을 직접적으로 공격하는 효소균들, 예를 들면 cellulase complex, laccase(LAC), lignin peroxidase(LIP), horse-radish peroxidase(HRP), manganese-independent peroxidase(MIP) 및 protocatechuate 3,4-dioxygenase(PCD) 등이 있고, 두번째 그룹으로서 manganese-dependent peroxidase(MnP), aryl alcohol oxidase(AAO) 및 glyoxal oxidase(GLO) 등인데, 이들 효소들은 목질을 직접적으로 공격하지 않고 제1그룹의 효소들과 협동하여 작용하는 것으로 알려지고 있다. 제3그룹의 효소들은 glucose oxidase(GOD) 및 cellobiose : quinone oxidoreductase(CBQ)로서 feedback type의 효소들로서 목재고분자의 분해시 대사의 고리를 결합시켜 주는 매우 중요한 기능을 하는 효소군들이다. 그러나 이 이외에도 다른 분해기구가 밝혀지고 있으며 기타 효소들에 의한 리그노셀룰로오스의 분해반응기구의 해명에는 상당한 시간이 걸릴 것으로 사료된다.

  • PDF

Determination of Substrate Specificities Against β-Glucosidase A (BglA) from Thermotoga maritime: A Molecular Docking Approach

  • Rajoka, Muhammad Ibrahim;Idrees, Sobia;Ashfaq, Usman Ali;Ehsan, Beenish;Haq, Asma
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.1
    • /
    • pp.44-49
    • /
    • 2015
  • Thermostable enzymes derived from Thermotoga maritima have attracted worldwide interest for their potential industrial applications. Structural analysis and docking studies were preformed on T. maritima β-glucosidase enzyme with cellobiose and pNP-linked substrates. The 3D structure of the thermostable β-glucosidase was downloaded from the Protein Data Bank database. Substrates were downloaded from the PubCehm database and were minimized using MOE software. Docking of BglA and substrates was carried out using MOE software. After analyzing docked enzyme/substrate complexes, it was found that Glu residues were mainly involved in the reaction, and other important residues such as Asn, Ser, Tyr, Trp, and His were involved in hydrogen bonding with pNP-linked substrates. By determining the substrate recognition pattern, a more suitable β-glucosidase enzyme could be developed, enhancing its industrial potential.

Effect of Fermentation Conditions on L-Lactic Acid Production from Soybean Straw Hydrolysate

  • Wang, Juan;Wang, Qunhui;Xu, Zhong;Zhang, Wenyu;Xiang, Juan
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.1
    • /
    • pp.26-32
    • /
    • 2015
  • Four types of straw, namely, soybean, wheat, corn, and rice, were investigated for use in lactic acid production. These straws were mainly composed of cellulose, hemicellulose, and lignin. After pretreatment with ammonia, the cellulose content increased, whereas the hemicellulose and lignin contents decreased. Analytical results also showed that the liquid enzymatic hydrolysates were primarily composed of glucose, xylose, and cellobiose. Preliminary experiments showed that a higher lactic acid concentration could be obtained from the wheat and soybean straw. However, soybean straw was chosen as the substrate for lactic acid production owing to its high protein content. The maximum lactic acid yield (0.8 g/g) and lactic acid productivity (0.61 g/(l/h)) were obtained with an initial reducing sugar concentration of 35 g/l at 30℃ when using Lactobacillus casei (10% inoculum) for a 42 h fermentation period. Thus, the experimental results demonstrated the feasibility of using a soybean straw enzymatic hydrolysate as a substrate for lactic acid production.

Detection of Cellulolytic Activity in Ophiostoma and Leptographium species by Chromogenic Reaction

  • Hyun, Min-Woo;Yoon, Ji-Hwan;Park, Wook-Ha;Kim, Seong-Hwan
    • Mycobiology
    • /
    • v.34 no.2
    • /
    • pp.108-110
    • /
    • 2006
  • To understand the ability of producing cellulolytic enzyme activity in the sapstaining fungi, four species of Ophiostoma and two species of Leptographium were investigated in the culture media containing each of cellulose substrates such as CM-cellulose, Avicel and D-cellobiose and each of chromogenic dyes such as Congo-Red, Phenol Red, Remazol Brilliant Blue and Tryphan Blue. When the fungi were grown for $5{\sim}7$ days at $25^{\circ}C$, the formation of clear zone by chromogenic reaction around the margin of the fungal colony was demonstrated in all the culture media Congo-Red containing CM-cellulose. There was difference in the formation of clear zone among the dyes. Only Ophiostoma setosum and Leptographium spp. showed cellulolytic activity to the three substrates. Overall, the results of this study show that ophiostomatoid sapstaining fungi can produce cellulolytic enzymes.

Characteristics of Two Unrecorded Yeasts from Wild Flowers in Ulleungdo, Korea

  • Hyun, Se-Hee;Min, Jin-Hong;Lee, Hyang Burm;Kim, Ha-Kun;Lee, Jong-Soo
    • The Korean Journal of Mycology
    • /
    • v.42 no.2
    • /
    • pp.170-173
    • /
    • 2014
  • Two unrecorded yeasts, Meyerozyma caribbica UL5-1 and Pichia silvicola UL6-1 were screened from 58 yeasts which were isolated from wild flowers in Ulleungdo in Gyeongsangbuk-do, Korea. The morphological and cultural characteristics of these unrecorded yeasts were investigated. Both yeasts were oval in shape and formed pseudomycelia. P. silvicola UL6-1 formed ascospore, but M. UL5-1 did not. P. silvicola UL6-1 and M. caribbica UL5-1 also grew in vitamin-free medium and 5% NaCl-containing yeast extract-peptone-dextrose medium. The two unrecorded yeasts assimilated glucose, galactose, xylose, cellobiose, trehalose, glycerol and sorbitol, and also fermented glucose, fructose and mannose. The supernatant of both M. caribbica UL5-1 and P. silvicola UL6-1 showed high antihypertensive angiotensin I-converting enzyme inhibitory activity of 84.2% and 82.6%, respectively. Cell-free extract of P. silvicola UL6-1 also showed very high anti-diabetic ${\alpha}$-glucosidase inhibitory activity (85.8%).

Purification and Characterization of Alkaline Invertase from the Hypocotyls of Mung Bean (Phaseolus raiatus L.) (녹두의 하배축에서 분양한 Alkaline lnvertase의 정제와 특성)

  • Young-Sang Kim
    • Journal of Plant Biology
    • /
    • v.38 no.4
    • /
    • pp.349-357
    • /
    • 1995
  • The alkaline invertase ($\beta$-D-fructofuranoside fructohydrolase, EC 3.2.1.26) was isolated and characterized from the hypocotyls of mung bean (Phaseolus radiatus L.). The enzyme was purified by consecutive step using diethylaminoethyl (DEAE)-cellulose anion exchange, 1st Sephadex G-200, DEAE-Sephadex A50 and 2nd Sephadex G-200 chromatography. The overall purification was about 77-fold with a yield of about 6%. The finally purified enzyme exhibited a specific activity of about 48 $\mu$mol of glucose produced mg-1 protein min-1 at pH 7.0 and appeared to be a single protein by nondenaturing polyacrylamide gel electrophoresis (PAGE). The enzyme had the native molecular weight of 450 kD and subunits molecular weight of 63 kD and 38 kD as estimated by Sephadex G-200 chromatography and SDS-PAGE, respectively, suggesting that the enzyme is a heteromultimeric protein composed of two types of subunits. On the other hand, the enzyme appeared to be not a glycoprotein according to the results of Con A chromatography and glycoprotein staining. The enzyme had a Km for sucrose of 19.7 mM at pH 7.0 and maximum activity around pH 7.5. The enzyme was most active with sucrose as substrate, compared to raffinose, cellobiose, maltose and lactose. These results indicate the alkaline invertase is a $\beta$-fructofuranosidase.

  • PDF

Comparison of Dyes for Easy Detection of Extracellular Cellulases in Fungi

  • Yoon, Ji-Hwan;Park, Ji-Eun;Suh, Dong-Yeon;Hong, Seung-Beom;Ko, Seung-Ju;Kim, Seong-Hwan
    • Mycobiology
    • /
    • v.35 no.1
    • /
    • pp.21-24
    • /
    • 2007
  • To evaluate which dye is effective in a plate assay for detecting extracellular cellulase activity produced by fungi, four chromogenic dyes including remazol brilliant blue, phenol red, congo red, and tryphan blue, were compared using chromagepic media. For the comparison, 19 fungal species belonging to three phyla, ascomycota, basidiomycota, and zygomycota were inoculated onto yeast nitrogen-based media containing different carbon substrates such as cellulose (carboxylmethyl and avicel types) and cellobiose labeled with each of the four dyes. Overall, the formation of clear zone on agar media resulting from the degradation of the substrates by the enzymes secreted from the test fungi was most apparent with media containing congo red. The detection frequency of cellulase activity was also most high on congo red-supplemented media. The results of this study showed that congo red is better dye than other three dyes in, a plate assay for, fungal enzyme detection.

$^{1}$H-NMR spectroscopic evidence on the glycosidic linkages of the transglycosylated products of low-molecular-weight $\beta$-D-glucosidase from trichoderma koningii (Trichoderma koningii에서 분비되는 .$\beta$-D-glucosidase의 반응산물에 대한 핵자기공명분석)

  • 이헌주;정춘수;강사욱;하영칠
    • Korean Journal of Microbiology
    • /
    • v.27 no.1
    • /
    • pp.35-42
    • /
    • 1989
  • The mode of transglycosylation reaction observed during the action of low-molecular-weigh $\beta$-D-glucosidase ($\beta$-D-glucoside glucohydrolase, EC3.2.1.21) purified from Trichoderma koningii ATCC 26113 was investigated using $^{1}H$-NMR spectroscopy. The enzyme was purified by the series of procedures including ammonium sulfate precipitation, and fractionations by column chromatographies on Bio-Gel P-150, DEAE-Sephadex A-50, and SP-Sephadex C-50. The final purification was performed by the band eluation after preparative polyacrylamide gel electrophoresis. The enzyme showed its molecular size of 78,000 through the analysis of sodium dodecyl sulfate-polyacrylamide gel electrophoresis and its isoelectric point of 5.80 through the analysis of analytical isoelectric focusing. The H-1 proton resonances were analyzed. After the reaction of the enzyme with cellobiose, the reaction products were separated by high performance liquid chromatography using refractive index detector. H-1 resonances of the products were consisted with those of gentiobiose [$\beta$-D-glucopyranosyl--(1,6)-D-glucopyranose], and cellotriose [$\beta$-D glucopyranosyl-(1,4)-$\beta$-D-glucopyranosyl]-(1,4)-D-glucopyranose] with minor resonances of sophorose [$\beta$-D-glucopyranosyl-(1,2)-D-glucopyranose], respectively.

  • PDF