• Title/Summary/Keyword: Cell-growth activity

Search Result 2,642, Processing Time 0.038 seconds

The work of Gyukhachukeotang on growth of ufterine myomal cells, MAP kinase activity, and Cell Apoptosis (격하축어탕(膈下逐瘀湯)이 자궁근종세포(子宮筋腫細胞)의 활성(增殖)과 MAP Kinase 활성(活性) 및 Cell Apoptosis에 미치는 영향)

  • Kim, So-Youn;Baek, Seung-Hee;Kim, Dong-Cheol
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.15 no.4
    • /
    • pp.1-16
    • /
    • 2002
  • This work examines the effect of treatment with Gyukhachukeotang on the growth of uterine myomal cells. Comparisons of cell growth, MAP kinase activity and expression of bcl-2 (apoptosis-related gene) were made between the control and experimental samples. The results as fallows; 1. Any concentration of Gyukhachukeotang above 0.01% yielded growth inhibition. Concentrations of 5% and 10% stopped all cell growth, demonstrating the effectiveness of Gyukhachukeotang as a growth inhibitor on uterine myomal cells. 2. The MAP kinase activity in uterine myomal cells treated with Gyukhachukeotang was decreased to a high degree at the concentration of 10%, and some inhibition of activity was detected at a concentration of 5%. 3. The expression of bcl-2, a Cell Apoptosis-related gene, in uterine myoma cells treated with Gyukhachukeotang was gradually increased with increasing concentration of Gyukhachukeotang. These results indicate the ability of Gyukhachukeotang to control uterine myomal cell growth, with concurrent reduction of MAP kinase activity. Treatment with Gyukhachukeotang appears to trigger a normal apoptosis response, as indicated by increased bcl-2 expression. This observed increase in apoptosis indicates that Gyukhachukeotang is an appropriate prescription to treat uterine myomal cells.

  • PDF

Cobrotoxin Inhibits Prostate Carcinoma PC-3 Cell Growth Through Induction of Apoptotic Cell Death Via Inactivation of NF-kB

  • Song, Kyung-Chul;Song, Ho-Sueb
    • Journal of Acupuncture Research
    • /
    • v.23 no.2
    • /
    • pp.47-59
    • /
    • 2006
  • We previously found that cobrotoxin inhibited $NF-{\kappa}B$ activity by reacting with signal molecules of $NF-{\kappa}B$ which is critical contributor in cancer cell growth by induction of apoptotic cell death. We here investigated whether cobrotoxin inhibits cell growth of human prostate cancer cells through induction of apoptotic cell death, which is related with the suppression of the $NF-{\kappa}B$ activity. Cobrotoxin $(0{\sim}8\;nM)$ inhibited prostate cancer cell growth through increased apoptosis in a dose dependent manner. Cobrotoxin inhibited DNA binding activity of $NF-{\kappa}B$, an anti-apoptotic transcriptional factor. Consistent with the induction of apoptosis and inhibition of $NF-{\kappa}B$, cobrotoxin increased the expression of pro-apoptotic proteins caspase 3. Cobrotoxin, a venom of Vipera lebetina turanica, is a group of basicpeptides composed of 233 amino acids with six disulfide bonds formed by twelve cysteins. NF-kB is activated by subsequent release of inhibitory IkB and translocation of p50. Since sulfhydryl group is present in kinase domain of p50 subunit of NF-kB, cobrotoxin could modify NF-kB activity by protein-protein interaction. And Cobrotoxin down regulated Akt signals. Salicylic acid as a reducing agent of Sulf-hydryl group and LY294002 as a Akt inhibitor abrogated cobrotoxin-induced cell growth and DNA binding activity of $NF-{\kappa}B$. These findings suggest that nano to pico molar range of cobrotoxin could inhibit prostate cancer cell growth, and the effect may be related with the induction of apoptotic cell death through Akt dependent inhibition of $NF-{\kappa}B$ signal.

  • PDF

Antibacterial Activity of Essential Oils on the Growth of Staphylococcus aureus and Measurement of their Binding Interaction Using Optical Biosensor

  • Chung, Kyong-Hwan;Yang, Ki-Sook;Kim, Jin;Kim, Jin-Chul;Lee, Ki-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.11
    • /
    • pp.1848-1855
    • /
    • 2007
  • Antibacterial activity of essential oils (Tea tree, Chamomile, Eucalyptus) on Staphylococcus aureus growth was evaluated as well as the essential oil-loaded alginate beads. The binding interactions between the cell and the essential oils were measured using an optical biosensor. The antibacterial activity of the essential oils to the cell was evaluated with their binding interaction and affinity. The antibacterial activity appeared in the order of Tea Tree>Chamomile>Eucalyptus, in comparison of the inhibition effects of the cell growth to the essential oils. The association rate constant and affinity of the cell binding on Tea Tree essential oil were $5.0{\times}10^{-13}\;ml/(CFU{\cdot}s)$ and $5.0{\times}10^5\;ml/CFU$, respectively. The affinity of the cell binding on Tea Tree was about twice higher than those on the other essential oils. It might be possible that an effective antibacterial activity of Tea Tree essential oil was derived from its strong adhesive ability to the cell, more so than those of the other essential oils.

Effect of Inhibitors on cell growth and urease activity of Vibrio parahaemolyticus (저해제가 Vibrio parahzemolyticius 균주의 생육 및 요소분해효소의 활성에 미치는 영향)

  • 김종숙;김영희
    • Journal of Life Science
    • /
    • v.10 no.6
    • /
    • pp.558-563
    • /
    • 2000
  • Effect of inhibitors on Vibrio parahaemolyticus cell growth and its urease activity was studied. The growth of the bacterium and the enzyme activity were inhibited by the addition of 0.02% p-hydroxymercuric benzoate, $HgCl_2$and $AgNO_3$. However, same concentration of boric acid, thallium acetate and $Pb(NO_3)_2$ did not affect the cell growth but inhibited urease activity by 25%, 29%, and 38%, respectively. Acetohydroxamic acid was the most potent inhibitor on cell growth by inhibiting 40% but did not affect urease activity. To investigate the effect of inhibitors on urease activity, urease was purified and confirmed on SDS-PAGE. The purified urease was inhibited 100% by the addition of 1 mM acetohydroxamic acid and $AgNO_3$but no inhibition was occurred by the addition of the same concentration of thallium acetate. and the addition of 0.01 mM of $HgCl_2$ and acetohydroxamic acid inhibited the purified urease activity by 39% and 24%, respectively. On 0.1 millimolar basic, acetohydroxamic acid and $HgCl_2$inhibited 4 times more active in urease inhibition than p-hydroxymercuric benzoate whereas no inhibition was occurred either thallium acetate or $Pb(NO_3)_2$.

  • PDF

Overexpression of TTRAP inhibits cell growth and induces apoptosis in osteosarcoma cells

  • Zhou, Caihong;Shen, Qi;Xue, Jinglun;Ji, Chaoneng;Chen, Jinzhong
    • BMB Reports
    • /
    • v.46 no.2
    • /
    • pp.113-118
    • /
    • 2013
  • TTRAP is a multi-functional protein that is involved in multiple aspects of cellular functions including cell proliferation, apoptosis and the repair of DNA damage. Here, we demonstrated that the lentivirus-mediated overexpression of TTRAP significantly inhibited cell growth and induced apoptosis in osteosarcoma cells. The ectopic TTRAP suppressed the growth and colony formation capacity of two osteosarcoma cell lines, U2OS and Saos-2. Cell apoptosis was induced in U2OS cells and the cell cycle was arrested at G2/M phase in Saos-2 cells. Exogenous expression of TTRAP in serum-starved U2OS and Saos-2 cells induced an increase in caspase-3/-7 activity and a decrease in cyclin B1 expression. In comparison with wild-type TTRAP, mutations in the 5'-tyrosyl-DNA phosphodiesterase activity of TTRAP, in particular $TTRAP^{E152A}$, showed decreased inhibitory activity on cell growth. These results may aid in clarifying the physiological functions of TTRAP, especially its roles in the regulation of cell growth and tumorigenesis.

Synergistic Inhibition of Membrane ATPase and Cell Growth of Helicobacter pylori by ATPase Inhibitors

  • Ki, Mi-Ran;Yun, Soon-Kyu;Lim, Wang-Jin;Hong, Bum-Shik;Hwang, Se-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.4
    • /
    • pp.414-421
    • /
    • 1999
  • Helicobacter pylori were found to be resistant to azide but sensitive to vanadate, suggesting that defect in the P-type ATPase activity rather than F-type ATPase would be lethal to cell survival or growth. To elucidate the relationship between this enzyme inhibition and H. pylori death, we determined the effect of omeprazole (OMP) plus vanadate on enzyme activity and cell growth. The minimum inhibitory concentration (MIC; ca. 0.8$\mu$mol/disk) of vanadate for H. pylori growth was lowered over l0-fold with the aid of OMP, whereby its inhibitory potential toward the P-type ATPase activity was diametrically increased. Alternatively, we found that this enzyme activity was essential for active transport in H. pylori. From these observations, we strongly suggest that the immediate cause of the growth inhibition of H. pylori cells with OMP and/or vanadate might be defective in the cell's active transport due to the lack of P-type ATPase activity. From the spectral data with circular dichroism (CD) spectroscopy, we found that activated OMP (OAS) at concentration below MIC did not disrupt helical structures of membrane proteins. Separately, we determined the cytopathic effect of OAS by SDS-PAGE, indicating the change in the production of cytoplasmic protein but not cell membrane.

  • PDF

Growth inhibition in head and neck cancer cell lines by gefitinib, an epidermal growth factor receptor tyrosine kinase inhibitor (두경부암 세포주에서 상피성장인자수용체 타이로신 카이네이즈 억제제인 gefitinib의 성장억제에 관한 연구)

  • Song, Seung-Il;Kim, Myung-Jin
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.35 no.5
    • /
    • pp.287-293
    • /
    • 2009
  • Cell survival is the result of a balance between programmed cell death and cellular proliferation. Cell membrane receptors and their associated signal transducing proteins control these processes. Of the numerous receptors and signaling proteins, epidermal growth factor receptor (EGFR) is one of the most important receptors involved in signaling pathways implicated in the proliferation and survival of cancer cells. EGFR is often highly expressed in human tumors including oral squamous cell carcinomas, and there is increasing evidence that high expression of EGFR is correlated with poor clinical outcome of common human cancers. Therefore, we examined the antiproliferative activity of gefitinib, epidermal growth factor receptor tyrosine kinase inhibitor (EGFR TKI), in head and neck cancer cell lines. SCC-9, KB cells were cultured and growth inhibition activity of gefitinib was measured with MTT assay. To study influence of gefitinib in cell cycle, we performed cell cycle analysis with flow cytometry. Western blot was done to elucidate the expression of EGFR in cell lines and phosphorylation of EGFR and downstream kinase protein, Erk and Akt. Significant growth inhibition was observed in SCC-9 cells in contrast with KB cells. Also, flow cytometric analysis showed G1 phase arrest only in SCC-9 cells. In Western blot analysis for investigation of EGFR expression and downstream molecule phosphorylation, gefitinib suppressed phosphorylation of EGFR and downstream protein kinase Erk, Akt in SCC-9. However, in EGFR positive KB cells, weak expression of active form of Erk and Akt and no inhibitory activity of phosphorylation in Erk and Akt was observed. The antiproliferative activity of gefitinib was not correlated with EGFR expression and some possibility of phosphorylation of Erk and Akt as a predictive factor of gefitinib response was emerged. Further investigations on more reliable predictive factor indicating gefitinib response are awaited to be useful gefitinib treatment in head and neck cancer patients.

Immune Cells Activity, Cytotoxicity and Nitrite Scavenging Activity of Extracts from Several Resource Plants

  • Boo, Hee-Ock;Park, Jeong-Hun;Park, Hyeon-Yong
    • Korean Journal of Plant Resources
    • /
    • v.31 no.6
    • /
    • pp.604-611
    • /
    • 2018
  • This study was conducted to explore the immune activity, anticancer activity and nitrile scavenging activities of methanol extracts from the various organs of four Korean resource plants. The immune responses from both human T and B cell line was significantly enhanced in the cell growth compared to control while the cell growth was influenced at a certain period of culture. The results revealed that the cell growth of both human T and B cell was altered in a time dependent manner. Among tested several resource plants, the flower extract of E. japonicum demonstrated a pronounced cytotoxicity against HCT-116 cell with an IC50 value $132.08{\mu}g\;ml-1$. The flower extract from Corylopsis coreana had a promising scavenging activity against pH 1.2 compared to other species. Taken together, the studied resource plants have influenced significantly in response to immunity and also have the potential cytotoxicity and nitric scavenging activities. However, the species E. japonicum exhibited the pronounced activities from several resource plants. The result from this investigation suggests that the extracts of studied resource plant could be an addition to basic medicine for some diseases.

Biological Properties of Different Types and Parts of the Dandelions: Comparisons of Anti-Oxidative, Immune Cell Proliferative and Tumor Cell Growth Inhibitory Activities

  • Lee, Sung-Hyeon;Park, Jae-Bok;Park, Hong-Ju;Cho, Soo-Muk;Park, Young-Ja;Sin, Jeong-Im
    • Preventive Nutrition and Food Science
    • /
    • v.10 no.2
    • /
    • pp.172-178
    • /
    • 2005
  • Dandelions have been reported to have medicinal properties and bioactive components that impact human health. However, the precise biological properties of dandelions and the parts of the plants possessing bioactive components remain uncertain. In this study, we evaluated 3 different types of dandelions based on their cultivation origin (Songpa, Uiryung, and native Uiryung types) as well as their 4 different plant parts (leaf, flower, root, skin). Each sample was extracted with $80\%$ methanol and then compared for the biological activities (anti-oxidative, immune cell proliferative and tumor cell growth inhibitory activities). All 3 types of dandelions possessed a degree of biological functions including the hydroxyl radical scavenger activity, immune cell proliferative activity and tumor cell growth inhibitory activity. However, there was no significant difference in these activities between the 3 dandelion types. Leaves of all three dandelion types showed the highest levels of all biological activities. To a lesser degree, the flower and root parts displayed biological activities. In the skin parts, anti-oxidative activity was also detected only at higher doses of dandelion extracts. Heating the dandelion leaf extract did not affect the biological activity, suggesting a heat-stable nature of the biological compounds. Taken together, these collective data suggest that dandelions, in particular their leaves, possess a high concentration of heat-resistant biological compounds, which are responsible for anti-oxidative, immune cell proliferative and tumor cell growth-inhibitory activities.

Melittin Inhibits Human Prostate Cancer Cell Growth through Induction of Apoptotic Cell Death

  • Park Hye-Ji;Lee Yong-Kyung;Song Ho-Seub;Kim Goon-Joung;Son Dong-Ju;Lee Jae-Woong;Hong Jin-Tae
    • Toxicological Research
    • /
    • v.22 no.1
    • /
    • pp.31-37
    • /
    • 2006
  • It was previously found that melittin inhibited $NF-{\kappa}B$ activity by reacting with signal molecules of $NF-{\kappa}B$ which is critical contributor in cancer cell growth by induction of apoptotic cell death. We here investigated whether melittin inhibits cell growth of human prostate cancer cells through induction of apoptotic cell death, and the possible signal pathways. Melittin ($0{\sim}1\;{\mu}g/ml$) inhibited prostate cancer cell growth in a dose dependent manner. Conversely related to the growth inhibitory effect, melittin increased the induction of apoptotic cell death in a dose dependent manner. Melittin also inhibited DNA binding activity of $NF-{\kappa}B$, an anti-apoptotic transcriptional factor. Consistent with the induction of apoptotic cell death and inhibition of $NF-{\kappa}B$, melittin increased the expression of pro-apoptotic proteins caspase-3, and Bax but down-regulated anti-apoptotic protein Bcl-2. These findings suggest that melittin could inhibit prostate cancer cell growth, and this effect may be related with the induction of apoptotic cell death via inactivation of $NF-{\kappa}B$.