• Title/Summary/Keyword: Cell-free fetal DNA

Search Result 12, Processing Time 0.02 seconds

Noninvasive fetal RHD genotyping using cell-free fetal DNA incorporating fetal RASSF1A marker in RhD-negative pregnant women in Korea

  • Han, Sung-Hee;Yang, Young-Ho;Ryu, Jae-Song;Kim, Young-Jin;Lee, Kyoung-Ryul
    • Journal of Genetic Medicine
    • /
    • v.12 no.2
    • /
    • pp.100-108
    • /
    • 2015
  • Purpose: Conventional methods for the prenatal detection of fetal RhD status involve invasive procedures such as fetal blood sampling and amniocentesis. The identification of cell-free fetal DNA (cffDNA) in maternal plasma creates the possibility of determining fetal RhD status by analyzing maternal plasma DNA. However, some technical problems still exist, especially the lack of a positive control marker for the presence of fetal DNA. Therefore, we assessed the feasibility and accuracy of fetal RHD genotyping incorporating the RASSF1A epigenetic fetal DNA marker from cffDNA in the maternal plasma of RhD-negative pregnant women in Korea. Materials and Methods: We analyzed maternal plasma from 41 pregnant women identified as RhD-negative by serological testing. Multiplex real-time PCR was performed by amplifying RHD exons 5 and 7 and the SRY gene, with RASSF1A being used as a gender-independent fetal epigenetic marker. The results were compared with those obtained by postnatal serological analysis of cord blood and gender identification. Results: Among the 41 fetuses, 37 were RhD-positive and 4 were RhD-negative according to the serological analysis of cord blood. There was 100% concordance between fetal RHD genotyping and serological cord blood results. Detection of the RASSF1A gene verified the presence of cffDNA, and the fetal SRY status was correctly detected in all 41 cases. Conclusion: Noninvasive fetal RHD genotyping with cffDNA incorporating RASSF1A is a feasible, reliable, and accurate method of determining fetal RhD status. It is an alternative to amniocentesis for the management of RhD-negative women and reduces the need for unnecessary RhIG prophylaxis.

Noninvasive Prenatal Diagnosis using Cell-Free Fetal DNA in Maternal Plasma: Clinical Applications

  • Yang, Young-Ho;Han, Sung-Hee;Lee, Kyoung-Ryul
    • Journal of Genetic Medicine
    • /
    • v.8 no.1
    • /
    • pp.1-16
    • /
    • 2011
  • Owing to the risk of fetal loss associated with prenatal diagnostic procedures (amniocentesis, chorionic villus sampling), noninvasive prenatal diagnosis (NIPD) is ultimate goal of prenatal diagnosis. The discovery of circulating cell-free fetal DNA (cffDNA) in maternal plasma in 1997 has opened up new probabilities for NIPD by Dr. Lo et al. The last decade has seen great development in NIPD. Fetal sex and fetal RhD status determination by cffDNA analysis is already in clinical use in certain countries. For routine use, this test is limited by the amount of cell-free maternal DNA in blood sample, the lack of universal fetal markers, and appropriate reference materials. To improve the accuracy of detection of fetal specific sequences in maternal plasma, internal positive controls to confirm to presence of fetal DNA should be analyzed. We have developed strategies for noninvasive determination of fetal gender, and fetal RhD genotyping using cffDNA in maternal plasma, using real-time quantitative polymerase chain reaction (RT-PCR) including RASSF1A epigenetic fetal DNA marker (gender-independent) as internal positive controls, which is to be first successful study of this kind in Korea. In our study, accurate detection of fetal gender through gestational age, and fetal RhD genotyping in RhD-negative pregnant women was achieved. In this assay, we show that the assay is sensitive, easy, fast, and reliable. These developments improve the reliability of the applications of circulating fetal DNA when used in clinical practice to manage sex-linked disorders (e.g., hemophilia, Duchenne muscular dystrophy), congenital adrenal hyperplasia (CAH), RhD incompatibility, and the other noninvasive pregnant diagnostic tests on the coming soon. The study was the first successful case in Korea using cffDNA in maternal plasma, which has created a new avenue for clinical applications of NIPD.

Noninvasive prenatal test for fetal chromosomal aneuploidies by massively parallel sequencing of cell-free fetal DNA in maternal plasma: The first clinical experience in Korea

  • Han, Sung-Hee;Yang, Young-Ho;Ryu, Jae-Song;Kang, Myung-Soo;Kim, Young-Jin;Lee, Kyoung-Ryul
    • Journal of Genetic Medicine
    • /
    • v.12 no.2
    • /
    • pp.85-91
    • /
    • 2015
  • Purpose: Noninvasive prenatal test (NIPT) by massively parallel sequencing (MPS) of cell-free fetal DNA in maternal plasma marks a significant advancement in prenatal screening, minimizing the need for invasive testing of fetal chromosomal aneuploidies. Here, we report the initial clinical performance of NIPT in Korean pregnant women. Materials and Methods: MPS-based NIPT was performed on 910 cases; 5 mL blood samples were collected and sequenced in the Shenzhen BGI Genomic Laboratory to identify aneuploidies. The risk of fetal aneuploidy was determined by L-score and t-score, and classified as high or low. The NIPT results were validated by karyotyping for the high-risk cases and neonatal follow-up for low-risk cases. Results: NIPT was mainly requested for two clinical indications: abnormal biochemical serum-screening result (54.3%) and advanced maternal age (31.4%). Among 494 cases with abnormal biochemical serum-screening results, NIPT detected only 9 (1.8%) high-risk cases. Sixteen cases (1.8%) of 910 had a high risk for aneuploidy: 8 for trisomy 21, 2 for trisomy 18, 1 for trisomy 13, and 5 for sex chromosome abnormalities. Amniocentesis was performed for 7 of these cases (43.8%). In the karyotyping and neonatal data, no false positive or negative results were observed in our study. Conclusion: MPS-based NIPT detects fetal chromosomal aneuploidies with high accuracy. Introduction of NIPT as into clinical settings could prevent about 98% of unnecessary invasive diagnostic procedures.

Application of digital polymerase chain reaction technology for noninvasive prenatal test

  • Lee, Seung Yong;Hwang, Seung Yong
    • Journal of Genetic Medicine
    • /
    • v.12 no.2
    • /
    • pp.72-78
    • /
    • 2015
  • Recently, noninvasive prenatal test (NIPT) has been adopted as a primary screening tool for fetal chromosomal aneuploidy. The principle of NIPT lies in isolating the fetal fraction of cell-free DNA in maternal plasma and analyzing it with bioinformatic tools to measure the amount of gene from the target chromosome, such as chromosomes 21, 18, and 13. NIPT will contribute to decreasing the need for unnecessary invasive procedures, including amniocentesis and chorionic villi sampling, for confirming fetal aneuploidy because of its higher positive predictive value than that of the conventional prenatal screening method. However, its greater cost than that of the current antenatal screening protocol may be an obstacle to the adoption of this innovative technique in clinical practice. Digital polymerase chain reaction (dPCR) is a novel approach for detecting and quantifying nucleic acid. dPCR provides real-time diagnostic advantages with higher sensitivity, accuracy, and absolute quantification than conventional quantitative PCR. Since the groundbreaking discovery that fetal cell-free nucleic acid exists in maternal plasma was reported, dPCR has been used for the quantification of fetal DNA and for screening for fetal aneuploidy. It has been suggested that dPCR will decrease the cost by targeting specific sequences in the target chromosome, and dPCR-based noninvasive testing will facilitate progress toward the implementation of a noninvasive approach for screening for trisomy 21, 18, and 13. In this review, we highlight the principle of dPCR and discuss its future implications in clinical practice.

Validation of fetus aneuploidy in 221 Korean clinical samples using noninvasive chromosome examination: Clinical laboratory improvement amendments-certified noninvasive prenatal test

  • Kim, Min-Jeong;Kwon, Chang Hyuk;Kim, Dong-In;Im, Hee Su;Park, Sungil;Kim, Ji Ho;Bae, Jin-Sik;Lee, Myunghee;Lee, Min Seob
    • Journal of Genetic Medicine
    • /
    • v.12 no.2
    • /
    • pp.79-84
    • /
    • 2015
  • Purpose: We developed and validated a fetal trisomy detection method for use as a noninvasive prenatal test (NIPT) including a Clinical Laboratory Improvement Amendments (CLIA)-certified bioinformatics pipeline on a cloud-based computing system using both Illumina and Life Technology sequencing platforms for 221 Korean clinical samples. We determined the necessary proportions of the fetal fraction in the cell-free DNA (cfDNA) sample for NIPT of trisomies 13, 18, and 21 through a limit of quantification (LOQ) test. Materials and Methods: Next-generation sequencing libraries from 221 clinical samples and three positive controls were generated using Illumina and Life Technology chemistries. Sequencing results were uploaded to a cloud and mapped on the human reference genome (GRCh37/hg19) using bioinformatics tools. Based on Z-scores calculated by normalization of the mapped read counts, final aneuploidy reports were automatically generated for fetal aneuploidy determination. Results: We identified in total 29 aneuploid samples, and additional analytical methods performed to confirm the results showed that one of these was a false-positive. The LOQ test showed that the proportion of fetal fraction in the cfDNA sample would affect the interpretation of the aneuploidy results. Conclusion: Noninvasive chromosome examination (NICE), a CLIA-certified NIPT with a cloud-based bioinformatics platform, showed unambiguous success in fetus aneuploidy detection.

Effective Method for Extraction of Cell-Free DNA from Maternal Plasma for Non-Invasive First-Trimester Fetal Gender Determination: A Preliminary Study

  • Lim, Ji-Hyae;Park, So-Yeon;Kim, Shin-Young;Kim, Do-Jin;Kim, Mee-Jin;Yang, Jae-Hyug;Kim, Moon-Young;Kim, Min-Hyoung;Han, Ho-Won;Choi, Kyu-Hong;Ryu, Hyun-Mee
    • Journal of Genetic Medicine
    • /
    • v.7 no.1
    • /
    • pp.53-58
    • /
    • 2010
  • Purpose: To find the most effective method for extraction of cell-free DNA (cf-DNA) from maternal plasma, we compared a blood DNA extraction system (blood kit) and a viral DNA extraction system (viral kit) for non-invasive first-trimester fetal gender determination. Materials and Methods: A prospective cohort study was conducted with maternal plasma collected from 44 women in the first-trimester of pregnancy. The cf-DNA was extracted from maternal plasma using a blood kit and a viral kit. Quantitative fluorescent-polymerase chain reaction (QF-PCR) was used to detect the SRY gene and AMEL gene. The diagnostic accuracy of the QF-PCR results was determined based on comparison with the final delivery records. Results: A total of 44 women were tested, but the final delivery record was only obtained in 36 cases which included 16 male-bearing and 20 female-bearing pregnancies. For the blood kit and viral kit, the diagnostic accuracies for fetal gender determination were 63.9% (23/36) and 97.2% (35/36), respectively. Conclusion: In non-invasive first-trimester fetal gender determination by QF-PCR, using a viral kit for extraction of cf-DNA may result in a higher diagnostic accuracy.

Chorionic villus sampling

  • Shim, Soon-Sup
    • Journal of Genetic Medicine
    • /
    • v.11 no.2
    • /
    • pp.43-48
    • /
    • 2014
  • Chorionic villus sampling has gained importance as a tool for early cytogenetic diagnosis with a shift toward first trimester screening. First trimester screening using nuchal translucency and biomarkers is effective for screening. Chorionic villus sampling generally is performed at 10-12 weeks by either the transcervical or transabdominal approach. There are two methods of analysis; the direct method and the culture method. While the direct method may prevent maternal cell contamination, the culture method may be more representative of the true fetal karyotype. There is a concern for mosaicism which occurs in approximately 1% of cases, and mosaic results require genetic counseling and follow-up amniocentesis or fetal blood sampling. In terms of complications, procedure-related pregnancy loss rates may be the same as those for amniocentesis when undertaken in experienced centers. When the procedure is performed after 9 weeks gestation, the risk of limb reduction is not greater than the risk in the general population. At present, chorionic villus sampling is the gold standard method for early fetal karyotyping; however, we anticipate that improvements in noninvasive prenatal testing methods, such as cell free fetal DNA testing, will reduce the need for invasive procedures in the near future.

Korean physicians' attitudes toward the prenatal screening for fetal aneuploidy and implementation of non-invasive prenatal testing with cell-free fetal DNA

  • Kim, Soo Hyun;Kim, Kun Woo;Han, You Jung;Lee, Seung Mi;Lee, Mi-Young;Shim, Jae-Yoon;Cho, Geum Joon;Lee, Joon Ho;Oh, Soo-young;Kwon, Han-Sung;Cha, Dong Hyun;Ryu, Hyun Mee
    • Journal of Genetic Medicine
    • /
    • v.15 no.2
    • /
    • pp.72-78
    • /
    • 2018
  • Purpose: Physicians' attitudes may have a strong influence on women's decision regarding prenatal screening options. The aim of this study is to assess the physicians' attitudes toward prenatal screening for fetal aneuploidy including non-invasive prenatal testing (NIPT) in South Korea. Materials and Methods: Questionnaires were distributed and collected at several obstetrics-gynecological conferences and meetings. The questionnaire included 31 multiple choice and 5 fill-in-the-blank questions. Seven questions requested physicians' demographic information, 17 questions requested information about the NIPT with cell-free fetal DNA, and 12 questions requested information about general prenatal screening practices. Results: Of the 203 obstetricians that completed the survey. In contrast with professional guidelines recommending the universal offering of aneuploidy screening, only 53.7% answered that prenatal aneuploidy testing (screening and/or invasive diagnostic testing) should be offered to all pregnant women. Physicians tended to have positive attitudes toward the clinical application of NIPT as both primary and secondary screening methods for patients at high-risk for fetal trisomy. However, for patients at average-risk for fetal trisomy, physicians tended to have positive attitudes only as a secondary screening method. Physicians with more knowledge about NIPT were found to tend to inform their patients that the detection rate of NIPT is higher. Conclusion: This is the first study to investigate expert opinion on prenatal screening in South Korea. Education of physicians is essential to ensure responsible patient counseling, informed consent, and appropriate management after NIPT.

Effect of electromagnetic field exposure on the reproductive system

  • Gye, Myung-Chan;Park, Chan-Jin
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.39 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • The safety of human exposure to an ever-increasing number and diversity of electromagnetic field (EMF) sources both at work and at home has become a public health issue. To date, many in vivo and in vitro studies have revealed that EMF exposure can alter cellular homeostasis, endocrine function, reproductive function, and fetal development in animal systems. Reproductive parameters reported to be altered by EMF exposure include male germ cell death, the estrous cycle, reproductive endocrine hormones, reproductive organ weights, sperm motility, early embryonic development, and pregnancy success. At the cellular level, an increase in free radicals and $[Ca^{2+}]i$ may mediate the effect of EMFs and lead to cell growth inhibition, protein misfolding, and DNA breaks. The effect of EMF exposure on reproductive function differs according to frequency and wave, strength (energy), and duration of exposure. In the present review, the effects of EMFs on reproductive function are summarized according to the types of EMF, wave type, strength, and duration of exposure at cellular and organism levels.

Noninvasive prenatal test for the pregnancy with Turner syndrome mosaicism 45, X/47, XXX: A case report

  • Kim, Ji Hye;Lee, Gun Ho;Cha, Dong Hyun;Cho, Eun-Hae;Jung, Yong Wook
    • Journal of Genetic Medicine
    • /
    • v.12 no.2
    • /
    • pp.118-122
    • /
    • 2015
  • Noninvasive prenatal test (NIPT) is a novel screening method for the diagnosis of fetal chromosomal aneuploidies. NIPT is based on technology that detects cell-free fetal DNA in maternal plasma and analyzes it with massively parallel sequencing technology to determine whether the fetus is at risk of trisomy 21, trisomy 18, trisomy 13 or sex chromosome abnormalities (SCAs). NIPT has been reported to have sensitivity of 99% and a false positive rate of less than 1% for detecting trisomy 21 and trisomy 18. Although extension of the application of NIPT to other SCAs has been attempted, there are concerns in extending NIPT to SCAs because of maternal or fetal mosaicism, undetected maternal SCAs, and multiple pregnancies. Recently, we assessed a pregnancy with the rare Turner syndrome mosaicism 45, X/47, XXX, which was reported as 45, X with NIPT. We present the case here and briefly review the current literatures on NIPT in testing for fetal monosomy X. To the best of our knowledge, this is the first report of the 45, X/47, XXX mosaicism in Korea to be reported as 45, X by NIPT with whole genome sequencing. This case report will provide valuable information for counseling women who want to undergo NIPT.