• 제목/요약/키워드: Cell-based Modeling

검색결과 287건 처리시간 0.026초

Analysis of the mechano-bactericidal effects of nanopatterned surfaces on implant-derived bacteria using the FEM

  • Ecren Uzun Yaylaci;Mehmet Emin Ozdemir;Yilmaz Guvercin;Sevval Ozturk;Murat Yaylaci
    • Advances in nano research
    • /
    • 제15권6호
    • /
    • pp.567-577
    • /
    • 2023
  • The killing of bacteria by mechanical forces on nanopatterned surfaces has been defined as a mechano-bactericidal effect. Inspired by nature, this method is a new-generation technology that does not cause toxic effects and antibiotic resistance. This study aimed to simulate the mechano-bactericidal effect of nanopatterned surfaces' geometric parameters and material properties against three implant-derived bacterial species. Here, in silico models were developed to explain the interactions between the bacterial cell and the nanopatterned surface. Numerical solutions were performed based on the finite element method. Elastic and creep deformation models of bacterial cells were created. Maximum deformation, maximum stress, maximum strain, as well as mortality of the cells were calculated. The results showed that increasing the peak sharpness and decreasing the width of the nanopatterns increased the maximum deformation, stress, and strain in the walls of the three bacterial cells. The increase in spacing between nanopatterns increased the maximum deformation, stress, and strain in E. coli and P. aeruginosa cell walls it decreased in S. aureus. The decrease in width with the increase in sharpness and spacing increased the mortality of E. coli and P. aeruginosa cells, the same values did not cause mortality in S. aureus cells. In addition, it was determined that using different materials for nanopatterns did not cause a significant change in stress, strain, and deformation. This study will accelerate and promote the production of more efficient mechano-bactericidal implant surfaces by modeling the geometric structures and material properties of nanopatterned surfaces together.

Synthesis and Evaluation of Tricyclic Derivatives Containing a Non-Aromatic Amide as Poly(ADP-ribose)polymerase-1 (PARP-1) Inhibitors

  • Park, Chun-Ho;Chun, Kwang-Woo;Choi, Jong-Hee;Ji, Wan-Keun;Kim, Hyun-Young;Kim, Seung-Hyun;Han, Gyoon-Hee;Kim, Myung-Hwa
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권5호
    • /
    • pp.1650-1656
    • /
    • 2011
  • A series of potent tricyclic derivatives with a non-aromatic amide as potent PARP-1 inhibitors were successfully synthesized and their PARP-1 inhibitory activity was evaluated. Among the derivatives, 2-(1-propylpiperidin-4-yloxy)-7,8,9,10-tetrahydrophenanthridin-6(5H)-one 23c displayed potent activity in a PARP-1 enzymatic assay and cell-based assay ($IC_{50}$ = 0.142 ${\mu}M$, $ED_{50}$ = 0.90 ${\mu}M$) with good water solubility. Further, molecular modeling studies confirmed the obtained biological results.

전송 이론을 이용한 공진 MTM-TL 특성 분석 및 응용 (Analysis of Resonant MTM-TL Using Transmission Line Theory and Its Applications)

  • 장성남;이범선
    • 한국전자파학회논문지
    • /
    • 제20권10호
    • /
    • pp.1091-1096
    • /
    • 2009
  • 본 논문에서는 공진 MTM-TL(Metamaterial Transmission Line) 등가 회로를 이용하여 방사 및 회로 파라미터의 추출 식을 제시하였다. 특히 개방 또는 단락 상태에서 방사 소자인 직렬 $R_0$와 병렬 $G_0$를 EM 시뮬레이션 또는 측정을 통해 얻은 S-parameterd(|$S_{11}$|)를 이용하여 추출한다, EM 시뮬레이션의 결과, 추출한 파라미터를 이용한 회로 시뮬레이션의 결과 그리고 측정 결과가 매우 일치함을 확인하였다.

마이크로그리드 시스템의 안정도에 관한 기초 연구 (A Study on the Stability of Micro-Grid System)

  • 손광명;이계병
    • 조명전기설비학회논문지
    • /
    • 제21권7호
    • /
    • pp.46-53
    • /
    • 2007
  • Micro-Grid는 높은 전력품질을 제공하기 위해 독립적으로 유효 및 무효전력 제어가 가능한 연료전지와 마이크로터빈과 같이 친환경적이고 신뢰할 수 있는 전력원을 채용하는 Micro-Source들로 구성된다. 본 논문은 Micro-Grid시스템의 동특성 모델링과 안정도 해석의 기본적 해석 방법에 관하여 연구하였다. Micro-Source 인버터의 기본주파수 모델을 이용하여 Micro-Grid 시스템의 동특성 모델을 구성하였다. Micro-Grid 시스템의 선형화된 동특성 모델을 기초로 하여 안정도 해석을 수행하였다. 사례연구 결과로부터 Micro-Grid 시스템의 안정도에 영향을 미치는 파라미터를 식별하였다.

미세구조 설계에 따른 이트리아 안정화 지르코니아의 전기적 성질 변화 (Effect of Microstructural Design on the Electrical Properties of Y2O3-Stabilized ZrO2)

  • 김선재;김경호;오석진;강대갑;국일현
    • 한국세라믹학회지
    • /
    • 제30권9호
    • /
    • pp.717-722
    • /
    • 1993
  • Effects of microstructures on the electrical properties of ZrO2 based ceramics were analyzed by modeling layer arrangements and mixed phase structures. Single layers and alternating multilayers were made from 3mol% and 8mol% Y2O3 doped ZrO2 powders, while mixed specimen was made by blending and compacting these raw powders. After sintering at 150$0^{\circ}C$ for 2hr in air, AC impedance characteristics were measured. Contributiion of bulk comonent to total resistivity and its temperature-dependence were larger in 8Y-ZrO2 single layer than in 3Y-ZrO2 single layer. The multilayered specimen connected in serial to electrodes showed partial characteristics of both 3Y-ZrO2 and 8Y-ZrO2 single layers. The multilayered specimen connected in parallel to electrodes and the mixed specimen exhibited characteristics mainly of 8Y-ZrO2 single layer. The multilayered specimen connected in parallel to electrodes revealed the highest electrical conductivity near the operating temperature of solid oxide fuel cell. However, it is expected that the mixed specimen is appropriate for the applications because of its relatively high electrical conductivity with high strength expected.

  • PDF

Binding Properties and Structural Predictions of Homeodomain Proteins CDX1/2 and HOXD8

  • Park, So-Young;Jeong, Mi-Suk;Jang, Se-Bok
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권7호
    • /
    • pp.2325-2331
    • /
    • 2011
  • Human CDX1 and CDX2 genes play important roles in the regulation of cell proliferation and differentiation in the intestine. Hox genes clustered on four chromosomal regions (A-D) specify positional signaling along the anterior-posterior body axis, including intestinal development. Using glutathione S-transferase (GST) pulldown assays, molecular interaction measurements, and fluorescence measurements, we found that the homeodomains (HDs) of CDX1 and CDX2 directly interact with that of HOXD8 in vitro. CDX1 showed significant affinity for HOXD8, but CDX2 showed weak affinity for HOXD8. Thus far, three-dimensional structures of CDX1/2 and HOXD8 have not been determined. In this study, we developed a molecular docking model by homology modeling based on the structures of other HD members. Proteins with mutations in the HD of CDX1 (S185A, N190A, T194A, and V212A) also bound to the HD of HOXD8. Our study suggests that the HDs of CDX1/2 resemble those of HOXD8, and we provide the first insight into the interaction between the HDs of CDX1/2 proteins and those of HOXD8.

Effective electromechanical coupling coefficient of adaptive structures with integrated multi-functional piezoelectric structural fiber composites

  • Koutsawa, Yao;Tiem, Sonnou;Giunta, Gaetano;Belouettar, Salim
    • Smart Structures and Systems
    • /
    • 제13권4호
    • /
    • pp.501-515
    • /
    • 2014
  • This paper presents a linear computational homogenization framework to evaluate the effective (or generalized) electromechanical coupling coefficient (EMCC) of adaptive structures with piezoelectric structural fiber (PSF) composite elements. The PSF consists of a silicon carbide (SiC) or carbon core fiber as reinforcement to a fragile piezo-ceramic shell. For the micro-scale analysis, a micromechanics model based on the variational asymptotic method for unit cell homogenization (VAMUCH) is used to evaluate the overall electromechanical properties of the PSF composites. At the macro-scale, a finite element (FE) analysis with the commercial FE code ABAQUS is performed to evaluate the effective EMCC for structures with the PSF composite patches. The EMCC is postprocessed from free-vibrations analysis under short-circuit (SC) and open-circuit (OC) electrodes of the patches. This linear two-scale computational framework may be useful for the optimal design of active structure multi-functional composites which can be used for multi-functional applications such as structural health monitoring, power harvest, vibration sensing and control, damping, and shape control through anisotropic actuation.

야전용 액체 연료개질 1 kW급 하이브리드 전원시스템 제어 연구 (Control Model of 1 kW Class Tactical Hybrid Power Generation System with Liquid Fuel Processor)

  • 지현진;하상현;김영철;조성백
    • 한국군사과학기술학회지
    • /
    • 제14권4호
    • /
    • pp.732-739
    • /
    • 2011
  • A fuel cell/secondary battery hybrid power generation system could extend well beyond the efficiency and interoperability of the conventional diesel generator. The suggested power source system consists of 2.3 kW class PEMFC, 100 Ah lithium polymer battery, and two DC/DC converters by serial connection type. It was known that interoperability of sub-systems is the key factor for stable and optimal control of the hybrid power generation system. The modeling and simulation methods have been proposed to reduce the number of configurations and performance tests for components selection and select the optimized control condition of the power generation system. The control model for power source system is implemented based on the empirical formulation and carried out in the Matlab/Simulink environment. The results show that the simulation can be used to establish the algorism of prototype and increase the durability of the power source system.

공간통계모형을 이용한 도시계획변경에 따른 소음도 예측 (Exposed Noise Simulation for Urban Planning Alteration Using Spatial Statistical Model)

  • 류훈재;전범석;박인권;장서일
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.948-951
    • /
    • 2014
  • Road traffic noise is closely related with urban forms and urban components, such as population, building, traffic and land-use, etc. Hence, it is possible to minimize the noise exposure problem depending on how to plan new town or urban planning alteration. This paper provides ways to apply for urban planning in consideration of noise through exposed noise estimation for urban planning alteration. Spatial autoregressive model which explains about 81.4% of road traffic noise from the former paper is used. The simulation results by the spatial statistical model are compared with those by the engineering program-based modeling for 5 small-scaled scenarios of urban planning alteration. The error from the limitation of containing informations inside the grid cell and the difficulties of reflecting acoustic phenomena is existed. Nevertheless, in the stage of preliminary design, the use of the statistical models that have been estimated well is useful in time and economically.

  • PDF

3D thermo-hydro-mechanical coupled discrete beam lattice model of saturated poro-plastic medium

  • Hadzalic, Emina;Ibrahimbegovic, Adnan;Dolarevic, Samir
    • Coupled systems mechanics
    • /
    • 제9권2호
    • /
    • pp.125-145
    • /
    • 2020
  • In this paper, we present a 3D thermo-hydro-mechanical coupled discrete beam lattice model of structure built of the nonisothermal saturated poro-plastic medium subjected to mechanical loads and nonstationary heat transfer conditions. The proposed model is based on Voronoi cell representation of the domain with cohesive links represented as inelastic Timoshenko beam finite elements enhanced with additional kinematics in terms of embedded strong discontinuities in axial and both transverse directions. The enhanced Timoshenko beam finite element is capable of modeling crack formation in mode I, mode II and mode III. Mode I relates to crack opening, mode II relates to in-plane crack sliding, and mode III relates to the out-of-plane shear sliding. The pore fluid flow and heat flow in the proposed model are governed by Darcy's law and Fourier's law for heat conduction, respectively. The pore pressure field and temperature field are approximated with linear tetrahedral finite elements. By exploiting nodal point quadrature rule for numerical integration on tetrahedral finite elements and duality property between Voronoi diagram and Delaunay tetrahedralization, the numerical implementation of the coupling results with additional pore pressure and temperature degrees of freedom placed at each node of a Timoshenko beam finite element. The results of several numerical simulations are presented and discussed.