• 제목/요약/키워드: Cell wall processing

검색결과 40건 처리시간 0.026초

Design of Ultra-sonication Pre-Treatment System for Microalgae CELL Wall Degradation

  • Yang, Seungyoun;Mariappan, Vinayagam;Won, Dong Chan;Ann, Myungsuk;Lee, Sung Hwa
    • International journal of advanced smart convergence
    • /
    • 제5권2호
    • /
    • pp.18-23
    • /
    • 2016
  • Cell walls of microalgae consist of a polysaccharide and glycoprotein matrix providing the cells with a formidable defense against its environment. Anaerobic digestion (AD) of microalgae is primarily inhibited by the chemical composition of their cell walls containing biopolymers able to resist bacterial degradation. Adoption of pre-treatments such as thermal, thermal hydrolysis, ultrasound and enzymatic hydrolysis have the potential to remove these inhibitory compounds and enhance biogas yields by degrading the cell wall, and releasing the intracellular algogenic organic matter (AOM). This paper preproposal stage investigated the effect of different pre-treatments on microalgae cell wall, and their impact on the quantity of soluble biomass released in the media and thus on the digestion process yields. This Paper present optimum approach to degradation of the cell wall by ultra-sonication with practical design specification parameter for ultrasound based pretreatment system. As a result of this paper presents, a microalgae system in a wastewater treatment flowsheet for residual nutrient uptake can be justified by processing the waste biomass for energy recovery. As a conclusion on this result, Low energy harvesting technologies and pre-treatment of the algal biomass are required to improve the overall energy balance of this integrated system.

ELECTRO-MICROSCOPE BASED 3D PLANT CELL IMAGE PROCESSING METHOD

  • Lee, Choong-Ho;Umeda Mikio;Takesi Sugimoto
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2000년도 THE THIRD INTERNATIONAL CONFERENCE ON AGRICULTURAL MACHINERY ENGINEERING. V.II
    • /
    • pp.227-235
    • /
    • 2000
  • Agricultural products are easily deformable its shape because of some external forces. However, these force behavior is difficult to measure quantitatively. Until now, many researches on the mechanical property was performed with various methods such as material testing, chemical analysis and non-destructive methods. In order to investigate force behavior on the cellular unit of agricultural products, electro-microscope based 3D image processing method will contribute to analysis of plant cells behavior. Before image measurement of plant cells, plant sample was cut off cross-sectioned area in a size of almost 300-400 ${\mu}$ m units using the micron thickness device, and some of preprocessing procedure was performed with fixing and dyeing. However, the wall structure of plant cell is closely neighbor each other, it is necessary to separate its boundary pixel. Therefore, image merging and shrinking algorithm was adopted to avoid disconnection. After then, boundary pixel was traced through thinning algorithm. Each image from the electro-microscope has a information of x,y position and its height along the z axis cross sectioned image plane. 3D image was constructed using the continuous image combination. Major feature was acquired from a fault image and measured area, thickness of cell wall, shape and unit cell volume. The shape of plant cell was consist of multiple facet shape. Through this measured information, it is possible to construct for structure shape of unit plant cell. This micro unit image processing techniques will contribute to the filed of agricultural mechanical property and will use to construct unit cell model of each agricultural products and information of boundary will use for finite element analysis on unit cell image.

  • PDF

열처리 밀기울의 수용성 분획의 특징 (Characteristics of Water Soluble Fractions of Wheat Bran Treated with Various Thermal Processes)

  • 황재관;김종태;조성자;김철진
    • 한국식품과학회지
    • /
    • 제27권6호
    • /
    • pp.934-938
    • /
    • 1995
  • Autoclaving, microwaving, 압출성형 등의 열 및 기계적 에너지에 대한 밀기울 세포벽의 반응성을 구명하기 위하여 수용성 분획의 특정을 연구하였다. 수용성 분획의 화학적 분석과 겔여과 크로마토그래피 결과에 의하면 밀기울에 포함되어 있는 전분의 호화가 가장 중요한 수용화 기작으로 작용하며, 이 과정에서 비전분성 세포벽 구성물질의 수용화도 일어냐는 것으로 밝혀졌다. 수용성의 비전분 다당류의 GC 분석결과 적용된 열처리 과정에서 세포벽의 arabinoxylan 부위가 많이 수용화되는 현상을 보였다. 특히, 고온파 고전단력을 동시에 제공하는 압출성형은 밀기울의 수용화에 가장 효율적이었으며, 또한 상대적으로 고분자량의 비전분성 구성성분을 수용 화시켰다.

  • PDF

압출성형에 의한 식물세포벽의 수용화 (Solubilization of Plant Cell Walls by Extrusion)

  • 황재관;김종태;홍석인;김철진
    • 한국식품영양과학회지
    • /
    • 제23권2호
    • /
    • pp.358-370
    • /
    • 1994
  • Plant cell walls consist of a variety of chemical constituents such as cellulose, humicelluloses, pertins, lignin, glycoproteins, etc. These components are strongly linked through hydrogen , covalent, ionic and hydrophobic bondings, which thus confers the self-protection capability on plants. Some processing by-products (hulls, brans, pomaces) of cereal, fruits and vegetables are very limited in further utilization due to their compact structural rigidity. In view of the fact that the plant cell walls are essentially composed of dietary fiber components , solubilization of the strong intermolecular linkage s can contribute to increasing the soluble dietary fiber content and thus diversifying the functional and physiological role of plant cell walls as dietary fiber sources. This article reviews the chemical constituents of cereals, fruits & vegetables and brown seaweeds with reference to their intermoleuclar linkages. An particular emphasis will be placed on the solubilizing phenomena of rigid plant cell walls by extrusion and the resulting change of functional properties. It is suggested that underutilized food resources, typically exemplified by various food processing by-products and surplus seaweeds, can be successfully modified toward improved functional performance by extrusion.

  • PDF

입자영상유속계를 이용한 혈관내피세포 모형 주위의 유동가시화 (Flow Visualization around the Endothelial Cell Model by the PIV System)

  • 노형운;서상호;유상신
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.381-384
    • /
    • 2000
  • Relationships between biochemical phenomena and hemodynamics on human endothelial cells are very important to study the mechanism of atherosclerotic formation and development. The objective of this study is to investigate the flow phenomena around the endothelial cell model by the PIV experiment. The microscopic images of endothelial cells were acquired by a CCD camera to fabricate the shape of endothelial cell. The cell models were fabricated by using a photoforming process. Two consecutive particle images were captured by the CCD camera for the image processing. Conifer powder as the tracing particles was added to water to visualize the flow field. The cross-correlation method was applied fer the image processing of the flow visualization. Pressure and wall shear stress variations on the surfaces of the endothelial cells were calculated to investigate the effects of hemodynamic forces on the morphological changes.

  • PDF

디지털 미세유체를 이용한 미세녹조류 형질전환에서의 세포벽의 영향 분석 (Effects of Cell Wall on the Transformation of Microalgae by a Digital Microfluidic System)

  • 임도진
    • 청정기술
    • /
    • 제21권2호
    • /
    • pp.90-95
    • /
    • 2015
  • 디지털 미세유체 전기천공 시스템을 활용하여 미세녹조류에 대한 형질전환 실험을 통해 기존 상용화 장치 대비 높은 유전자 전달 효율과 세포 생존도를 확인하였다. 전기천공의 주요 파라미터인 인가전압 및 인가시간 변화를 주며 세포벽이 존재하는 세포종과 세포벽이 없는 세포종에 대한 비교 실험을 수행하였다. 이를 통해 식물 세포의 전기천공에서 세포벽의 역할은 단순히 유전체의 전달을 방해하는 부정적 요소로만 작용하지 않는 다는 사실을 확인하였다. 병렬화 및 온 칩 세포 배양 등을 통해 제안된 디지털 전기천공 기술이 향후 새로운 청정 형질전환 방법으로써의 가능성도 확인하였다.

Yeast Single-Cell Protein Production Using Potato Processing Waste Water

  • Park, Eung-Yeal;Crawford, Don-L.;Korus, Roger-A.;Heimsch, Richard-D.
    • Journal of Microbiology and Biotechnology
    • /
    • 제1권3호
    • /
    • pp.212-219
    • /
    • 1991
  • Four species of yeast, Saccharomyces cerevisiae, Candida utilis, Saccharomycopsis flbuligera, and Schwanniomyces castellii were evaluated for their ability to bioconvert potato processing waste water into microbial protein and the resulting single-cell proteins were evaluated as protein sources for rainbow trout, using in vitro analyses. The studies indicated that Schwanniomyces castellii, which utilizes starch dircetly and converts it into cell mass efficiently, was suitable for the bioconversion. In the single-stage continuous bioconversion, the yield S. castellii cell mass, which contained approximately 37% protein, was 77%, at dilution rate 0.25 $h^{-1}$. Reduction of total carbohydrate was 81%. During batch fermentations, cell mass yield was about 72% and total carbohydrate reduction was 81%. Among the yeasts tested, S. castellii possessed the most fragile cell wall and had a favorable amino acid profile for salmonid fish; protein score of 86% (Met). In an in vitro pepsin digestibility test 80% digestibility (23~38% above control) was observed when cells were pre-heated in a steam bath for 30 min. Results presented should be regarded as being preliminary in nature because they were derived from single experiments.

  • PDF

Biotechnological improvement of lignocellulosic feedstock for enhanced biofuel productivity and processing

  • Ko, Jae-Heung;Kim, Hyun-Tae;Han, Kyung-Hwan
    • Plant Biotechnology Reports
    • /
    • 제5권1호
    • /
    • pp.1-7
    • /
    • 2011
  • Secondary walls have recently drawn research interest as a primary source of sugars for liquid biofuel production. Secondary walls are composed of a complex mixture of the structural polymers cellulose, hemicellulose, and lignin. A matrix of hemicellulose and lignin surrounds the cellulose component of the plant's cell wall in order to protect the cell from enzymatic attacks. Such resistance, along with the variability seen in the proportions of the major components of the mixture, presents process design and operating challenges to the bioconversion of lignocellulosic biomass to fuel. Expanding bioenergy production to the commercial scale will require a significant improvement in the growth of feedstock as well as in its quality. Plant biotechnology offers an efficient means to create "targeted" changes in the chemical and physical properties of the resulting biomass through pathway-specific manipulation of metabolisms. The successful use of the genetic engineering approach largely depends on the development of two enabling tools: (1) the discovery of regulatory genes involved in key pathways that determine the quantity and quality of the biomass, and (2) utility promoters that can drive the expression of the introduced genes in a highly controlled manner spatially and/or temporally. In this review, we summarize the current understanding of the transcriptional regulatory network that controls secondary wall biosynthesis and discuss experimental approaches to developing-xylem-specific utility promoters.

홍삼 내백부의 수삼 미세구조 (Ultrastructure of Fresh Root Turned into Inside White of Red Ginseng)

  • 조병구;박훈;이준성
    • Journal of Ginseng Research
    • /
    • 제18권3호
    • /
    • pp.187-190
    • /
    • 1994
  • The pith and xylem parts of fresh root that turned into inside-white during processing for red ginseng was investigated under scanning electron microscope in comparison with the sa31e position of fresh root processed into normal reddening. In the inside-white part starch storage cells remain mostly in vacancy or with small number of starch granules and with large hollow by missing cell membranes between cells. Many starch seed granules appeared on the surface of storage cell wall in the inside-white part. Fresh root sample showed better picture than dried powder.

  • PDF

In Vitro Digestibility of Rice and Barley in Forms of Raw Flour and Cooked Kernels

  • Han, Jung-Ah;Jang, Su-Hae;Lim, Seung-Taik
    • Food Science and Biotechnology
    • /
    • 제17권1호
    • /
    • pp.180-183
    • /
    • 2008
  • Digestion properties of 3 types of cereals, white rice, brown rice, and barley, were measured after cooking or grinding. Regardless of the processing methods, white rice showed the highest rate and the greatest extent of digestion, whereas barley showed the lowest values. During the early digestion period, cooked white rice kernels had a larger k (kinetic constant) value than uncooked white rice flour, indicating that cooking induced faster digestion than grinding. In the case of brown rice and barley, the cell wall in cooked kernels remained intact and resulted in a lower k values than those of uncooked flour. However, after 3 hr of digestion, the total digestion extent was greater for the cooked brown rice and barley than that for uncooked flours. The high content of slowly digestible starch (SDS) in cooked brown rice and barley might be due to the starch fraction which was protected by the cell wall. The resistant starch (RS) content, however, was greater for the uncooked flours than that for cooked kernels. The cooked kernels of 3 cereal samples tested showed higher glycemic index (GI) values than the uncooked flours.