• 제목/요약/키워드: Cell wall degradation enzymes

검색결과 15건 처리시간 0.022초

과실의 연화중에 세포벽 성분과 세포벽분해효소의 변화 (Changes in Cell Wall Components and Cell Wall-degrading enzymes during Softening of Fruits)

  • 신승렬;김광수
    • 한국식품저장유통학회지
    • /
    • 제3권1호
    • /
    • pp.93-104
    • /
    • 1996
  • The cell wall components of fruit include cellulose. hemicellulose, pectin, glycoprotein etc., and the cell wall composition differs according to the kind of fruit. Fruit softening occurs as a result of a change in the cell wall polysaccharides : the middle lamella which links primary cell walls is composed of pectin. and primary cell walls are decomposed by a solution of middle lamella caused due to a result of pectin degradation by pectin degrading enzymes during ripening and softening, During fruit ripening and softening, contents of arabinose and galactose among non-cellulosic neutral sugars are notably decreased, and this occurs as a result of the degradation of pectin during fruit repening and softening since they are side-chained with pectin in the form of arabinogalactan and galactan Enzymes involved in the degradation of the cell wall include polygalacturonase, cellulose, pectinmethylesterase, glycosidase, etc., and various studies have been done on the change in enzyme activities during the ripening and softning of fruit. Among cell wall-degrading enzymes, polygalacturonase has the greatest effect on fruit softening, and its activity Increases during the maturating and softening of fruit. This softening leads to the textural change of fruit as a result of the degradation of cell wall polysaccharides by a cell wall degrading enzyme which exists in fruit.

  • PDF

Plant Cell Wall Degradation with a Powerful Fusarium graminearum Enzymatic Arsenal

  • Phalip, Vincene;Goubet, Florence;Carapito, Raphael;Jeltsch, Jean-Marc
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권6호
    • /
    • pp.573-581
    • /
    • 2009
  • The complex enzyme pool secreted by the phytopathogenic fungus Fusarium graminearum in response to glucose or hop cell wall material as sole carbon sources was analyzed. The biochemical characterization of the enzymes present in the supernatant of fungal cultures in the glucose medium revealed only 5 different glycosyl hydrolase activities; by contrast, when analyzing cultures in the cell wall medium, 17 different activities were detected. This dramatic increase reflects the adaptation of the fungus by the synthesis of enzymes targeting all layers of the cell wall. When the enzymes secreted in the presence of plant cell wall were used to hydrolyze pretreated crude plant material, high levels of monosaccharides were measured with yields approaching 50% of total sugars released by an acid hydrolysis process. This report is the first biochemical characterization of numerous cellulases, hemicellulases, and pectinases secreted by F. graminearum and demonstrates the usefulness of the described protein cocktail for efficient enzymatic degradation of plant cell wall.

Chemical Changes during Ensilage and In sacco Degradation of Two Tropical Grasses: Rhodesgrass and Guineagrass Treated with Cell Wall-degrading Enzymes

  • Zhu, Yu;Nishino, Naoki;Xusheng, Guo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제24권2호
    • /
    • pp.214-221
    • /
    • 2011
  • Effects of the cell wall-degrading enzymes derived from Acremonium cellulolyticus and Trichoderma viride on the silage fermentation and in sacco degradation of tropical grasses i.e. rhodesgrass (Chloris gayana Kunth. cv. Callide) and guineagrass (Panicum maximum Jacq. cv. Natsukaze) were investigated in laboratory-scale experiments. These two grasses were either treated with or without the enzymes before ensiling. Untreated rhodesgrass produced acetate fermentation silage (lactate, $13.0\;g\;kg^{-1}$ DM; acetate, $38.7\;g\;kg^{-1}$ DM) with high final pH value and $NH_3$-N content (5.84 and $215\;g\;kg^{-1}$ DM). Addition of enzymes significantly increased (p<0.01) the lactate production (lactate, 45.6; acetate, $34.0\;g\;kg-^{1}$ DM) and decreased (p<0.01) the pH and $NH_3$-N (4.80 and $154\;g\;kg^{-1}$ DM) in the ensiled forages when compared with the control silages. Untreated guineagrass was successfully preserved with a high lactate proportion (lactate, 45.5; acetate, $24.1\;g\;kg^{-1}$ DM), and the addition of enzymes further enhanced the desirable fermentation (lactate, $57.5\;g\;kg^{-1}$ DM; acetate, $19.4\;g\;kg^{-1}$ DM). The content of NDF was lowered (p<0.05) by enzymes in both silages, but the extent appeared greater in the enzyme-treated rhodesgrass (rhodesgrass, $48\;g\;kg^{-1}$ DM; guineagrass, $21\;g\;kg^{-1}$ DM). Changes in the kinetics of in sacco degradation showed that enzyme treatment increased (p<0.01) the rapidly degradable DM (rhodesgrass, 299 vs. $362\;g\;kg^{-1}$ DM; guineagrass, 324 vs. $343\;g\;kg^{-1}$ DM) but did not influence the potential degradation, lag time and degradation rate of DM and NDF in the two silages.

Identification of Sugar-Responsive Genes and Discovery of the New Functions in Plant Cell Wall

  • 이은정
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2007년도 춘계학술발표회
    • /
    • pp.65-73
    • /
    • 2007
  • The objective of this study is to understand how regulatory mechanisms respond to sugar status for more efficient carbon utilization and source-sink regulation in plants. So, we need to identify and characterize many components of sugar-response pathways for a better understanding of sugar responses. For this end, genes responding change of sugar status were screened using Arabidpsis cDNA arrays, and confirmed thirty-six genes to be regulated by sucrose supply in detached leaves by RNA blot analysis. Eleven of them encoding proteins for amino acid metabolism and carbohydrate metabolism were repressed by sugars. The remaining genes induced by sugar supply were for protein synthesis including ribosomal proteins and elongation factors. Among them, I focused on three hydrolase genes encoding putative $\beta$-galactosidase, $\beta$-xylosidase, and $\beta$-glucosidase that were transcriptionally induced in sugar starvation. Homology search indicated that these enzymes were involved in hydrolysis of cell wall polysaccharides. In addition to my results, recent transcriptome analysis suggested multiple genes for cell wall degradation were induced by sugar starvation. Thus, I hypothesized that enzyme for cell wall degradation were synthesized and secreted to hydrolyze cell wall polysaccharides producing carbon source under sugar-starved conditions. In fact, the enzymatic activities of these three enzymes increased in culture medium of Arabidopsis suspension cells under sugar starvation. The $\beta$-galactosidase encoded by At5g56870 was identified as a secretory protein in culture medium of suspension cells by mass spectrometry analysis. This protein was specifically detected under sugar-starved condition with a specific antibody. Induction of these genes was repressed in suspension cells grown with galactose, xylose and glucose as well as with sucrose. In planta, expression of the genes and protein accumulation were detected when photosynthesis was inhibited. Glycosyl hydrolase activity against galactan also increased during sugar starvation. Further, contents of cell wall polysaccharides especially pectin and hemicellulose were markedly decreased associating with sugar starvation in detached leaves. The amount of monosaccharide in pectin and hemicellulose in detached leaves decreased in response to sugar starvation. These results supported my idea that cell wall has one of function to supply carbon source in addition to determination of cell shape and physical support of plant bodies.

  • PDF

고추의 성숙에 따른 세포벽 다당류의 변화와 ${\beta}-Galactosidase$ Isozymes의 분리 (Ripening Related Changes in Hot Pepper Fruit Cell Walls Structural Alterations of Cell Wall Polysaccharides and Separation of Galactosidase Isozymes)

  • 김순동;강명수;김광수
    • 한국식품영양과학회지
    • /
    • 제14권2호
    • /
    • pp.157-163
    • /
    • 1985
  • Various cell wall polysaccharides and related enzyme activities in hot pepper fruit were determined at different stages of maturity. The uronic acid content of cell walls decreased between immature green and turning stage fruit and then increased by red ripe stage. In contrast, cellulose content of cell walls changed only a little during ripening. Total neutal sugar content of cell wall material decreased 50% and galactose content of the walls decreased about 80% by the turning stage. Polygalacturonase and ${\beta}-galactosidase$ activities, as well as total hemicellulose from isolated cell walls of ripening hot pepper fruit were studied using gel filtration chromatography. Polygalacturonase activity was not detectable but 5 isozymes of ${\beta}-galactosidase$ were resolved. The activities of the enzymes were relatively high and gel filtration showed that they differed in molecular weight. Hemicellulose content decreased during ripening and softening. The molecular weight profiles shifted from high molecular weight to low molecular weight polymers during ripening. The changes in cell walls that may be associated with fruit softening involve the alteration of hemicellulose prior to the degradation of wall-bound uronic acid. It is suggested that the decrease in cell wall galactose involved changes in turnover of new cell wall components.

  • PDF

먹물버섯의 자가분해 과정에 대한 미세구조 연구 (Ultrastructural Studies on the Autolysis of Coprinellus congregatus)

  • 최형태;조정원
    • 미생물학회지
    • /
    • 제41권4호
    • /
    • pp.312-315
    • /
    • 2005
  • 먹물버섯의 하나인 Coprinellus congregatus에서는 자실체가 성숙된 후 곧 자가분해되어 먹물로 전환된다. 이 자가분해 과정과 관련된 가수분재 효소의 역할을 이해하기 위한 첫 단계로서, 자가분해과정과 연관된 미세구조의 변화를 전자현미경으로 조사하였다. 자실체의 성숙과정에서 자실층과 자실하층에 존재하는 모든 세포질은 새로운 포자의 형성을 위하여 포자로 이동되는 것으로 보인다. 조직 내의 세포질의 고갈과 포자의 완성은 조직 내의 세포벽의 분해를 야기하는 것으로 보이며, 자실층과 자실하층의 세포벽은 동시적으로 분해 되는 것으로 생각된다. 본 연구는 먹물버섯의 자가분해가 세포질의 분해가 아닌 세포벽의 분해과정에 의한 것임을 보여 주었으며, chitin 분해효소와 같은 가수분해 효소의 중요성을 제시하였다.

버섯류의 원형질체 나출을 위한 고효율 효소 선발 (Selection of High Efficient Enzyme for Protoplasts Isolation from Mushrooms)

  • 김종군;김진희;공원식;강희완
    • 한국균학회지
    • /
    • 제38권1호
    • /
    • pp.21-24
    • /
    • 2010
  • 현재 시판되고 있는 세포벽 분해 효소 중 cellulase onozuka R-10(Yakult Honsha, Japan), yatalase(Takara), $Glucanex^R$ 200G(Novo Industry, Denmark)를 조합하여 Flammulina velutipes를 대상으로 가장 효율적인 방법을 선발하고, 선발된 방법을 Pleurotus ostreatus, P. eryngii, Hypsizygus marmoreus에 적용하였다. F. velutipes의 포자, 셀로판지에 배양한 균사, homogenizer로 마쇄한 균사체를 대상으로 공시한 세포벽 분해효소를 단독 혹은 조합하여 처리하였다. 그 결과, 포자현탁액이나 셀로판지에 배양한 균사를 사용하는 것에 비해 homogenizer로 마쇄한 균사체를 사용하는 것이 높은 수율로 원형질체를 분리할 수 있었다. 또한 시험에 사용한 효소 중선발된 $Glucanex^R$ 200G와 cellulase onozuka R-10 효소의 혼합 처리에서 고효율의 원형질체가 분리되었다. 분리된 원형질체를 대상으로 재생률을 조사한 결과, 0.39~0.51% 범위의 재생률을 나타내었다

AUTOLYSIS IN THE ANAEROBIC FUNGUS Piromyces communis OTS1 : PRESENCE OF CHITINASE AND β-1, 3-GLUCANASE ACTIVITIES

  • Sakurada, M.;Morgavi, D.P.;Ohishi, T.;Onodera, R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제9권3호
    • /
    • pp.303-307
    • /
    • 1996
  • The degree of autolysis and presence of cell-wall degrading enzymes in an anaerobic ruminal fungus, Piromyces communis OTSI, grown in liquid medium, was monitored to evaluate the effect of self-digestion on fungal biomass. After a 30 days incubation period fungal dry weight decreased by 45% and the cell wall component chitin decreased by 22%. Chitinase activity detected in the supernatant was mainly of the endotype and peaked at day 6 of the incubation. ${\beta}-1$, 3-glucanase was detected from day 4 and increased throughout the incubation period. Autolysis was a slow process, and under natural conditions it is unlikely that it plays a significant role in the degradation of the spent fungal vegetative stage in the rumen.

Effects of NSP Degrading Enzyme on In vitro Digestion of Barley

  • Li, W.F.;Sun, J.Y.;Xu, Z.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제17권1호
    • /
    • pp.122-126
    • /
    • 2004
  • A digestion trial in vitro was conducted to study effects of supplementation of NSP (non-starch polysaccharides) degrading enzyme (feed grade) on cell wall degradation and digestibility of nutrients in barley. The slices of barley were soaked in distilled water with or without 0.15% non-starch polysaccharides degrading enzyme. Microscopic examination of the slices showed that the endosperm cell wall of barley was completely degraded by the non-starch polysaccharides degrading enzyme. The residues and supernatant of digesta in vitro were separated by filtration with 0.1 mm nylon fabric. The residues were used for measurement of crude protein, crude fat, crude fiber, and moisture. The supernatant was used for determination of viscosity, as well as amino-nitrogen and glucose content. The results showed that compared with the control, the amino-nitrogen and glucose content of the supernatant increased by 17.58% (p<0.05) and 10.26% (p<0.05), respectively, while viscosity did not change. Enzyme supplementation increased the digestibilities of dry matter, crude protein, nitrogen-free extract, crude fat and crude fiber of barley by 18.1% (p<0.05), 20.3% (p<0.05), 16.4% (p<0.05), 26.9% (p<0.05) and 30.0% (p<0.05), respectively. The present study suggests that cell wall hydrolysis may contribute to improved nutrient digestion in vivo when non-starch polysaccharides degrading enzymes are fed to swine.