• Title/Summary/Keyword: Cell toxicity

Search Result 1,787, Processing Time 0.027 seconds

Ginsenoside Rb1 attenuates methamphetamine (METH)-induced neurotoxicity through the NR2B/ERK/CREB/BDNF signalings in vitro and in vivo models

  • Yang, Genmeng;Li, Juan;Peng, Yanxia;Shen, Baoyu;Li, Yuanyuan;Liu, Liu;Wang, Chan;Xu, Yue;Lin, Shucheng;Zhang, Shuwei;Tan, Yi;Zhang, Huijie;Zeng, Xiaofeng;Li, Qi;Lu, Gang
    • Journal of Ginseng Research
    • /
    • v.46 no.3
    • /
    • pp.426-434
    • /
    • 2022
  • Aim: This study investigates the effects of ginsenoside Rb1 (GsRb1) on methamphetamine (METH)-induced toxicity in SH-SY5Y neuroblastoma cells and METH-induced conditioned place preference (CPP) in adult Sprague-Dawley rats. It also examines whether GsRb1 can regulate these effects through the NR2B/ERK/CREB/BDNF signaling pathways. Methods: SH-SY5Y cells were pretreated with GsRb1 (20 mM and 40 mM) for 1 h, followed by METH treatment (2 mM) for 24 h. Rats were treated with METH (2 mg/kg) or saline on alternating days for 10 days to allow CPP to be examined. GsRb1 (5, 10, and 20 mg/kg) was injected intraperitoneally 1 h before METH or saline. Western blot was used to examine the protein expression of NR2B, ERK, P-ERK, CREB, P-CREB, and BDNF in the SH-SY5Y cells and the rats' hippocampus, nucleus accumbens (NAc), and prefrontal cortex (PFC). Results: METH dose-dependently reduced the viability of SH-SY5Y cells. Pretreatment of cells with 40 µM of GsRb1 increased cell viability and reduced the expression of METH-induced NR2B, p-ERK, p-CREB and BDNF. GsRb1 also attenuated the expression of METH CPP in a dose-dependent manner in rats. Further, GsRb1 dose-dependently reduced the expression of METH-induced NR2B, p-ERK, p-CREB, and BDNF in the PFC, hippocampus, and NAc of rats. Conclusion: GsRb1 regulated METH-induced neurotoxicity in vitro and METH-induced CPP through the NR2B/ERK/CREB/BDNF regulatory pathway. GsRb1 could be a therapeutic target for treating METH-induced neurotoxicity or METH addiction.

Phenolic compounds from the flowers of Cosmos bipinnatus and their anti-atopic activity (코스모스(Cosmos bipinnatus) 꽃으로부터 phenolic 화합물의 분리 동정과 항아토피 효과)

  • Jeon, Hyeong-Ju;Kim, Hyoung-Geun
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.3
    • /
    • pp.215-219
    • /
    • 2022
  • The flowers of Cosmos bipinnatus were extracted with solvent made with methanol:water (4:1) and the concentrates were partitioned into ethyl acetate (EtOAc), n-butanol (n-BuOH), and water (H2O) fractions. The octadecyl silica gel (ODS) and silica gel (SiO2) column chromatographies were repeated for the EtOAc fraction to isolated of two phenolic compounds. The chemical structure of the isolated compounds were identified as benzyl O-β-ᴅ-glucopyranoside (1), and 2-phenylethyl O-β-ᴅ-glucopyranoside (2) through spectroscopic datas such as nuclear magnetic resornance, infrarad spectroscopy, and mass spectroscopy. These two compounds were first isolated from C. bipinnatus flowers through this study. To evaluate the anti-atopic activity of the two isolated compounds using a HaCaT cell line induced by ultraviolet light, several experiments were conducted and neither both compounds showed toxicity in the concentration range of 1 to 1,000 ㎍/mL. In the results of anti-atopic activity through Thymus and activation regualted chemokine (TARC) assay, both compounds showed dose-dependent TARC inhibitory activity. In particular, compound 1 showed significant activity even in a low concentration range of 10 ㎍/mL, and in different concentration ranges. Also compound 1 showed higher inhibitory activity than other compound, confirming that the anti-atopic activity was the most excellent. Based on these results, it is considered that it can be used as a functional cosmetic material.

Antioxidant and Anti-Inflammatory Activity of Brachythecium populeum Extract (Brachythecium populeum 추출물의 항산화 및 항염효과)

  • Sang-Nam PARK;Ok Hee LEE
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.55 no.3
    • /
    • pp.174-183
    • /
    • 2023
  • Antioxidant, cytotoxic, and anti-inflammatory assays were conducted to determine the commercial viability of Brachythecium populeum. The antioxidant activity was assessed by performing the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays. This was followed by the quantification of polyphenols and flavonoids. Results of the DPPH and ABTS assay showed that antioxidant activities of the ethanol extract of B. populeum were 3.7 and 3.6 times higher than water extract, respectively. The polyphenol concentration was also determined to be 4.1 times higher and the flavonoid concentration was 5.3 times higher than the water extract. The cell-based experiments, 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay and nitric oxide assay, were performed using RAW 264.7. Results of the MTT assay revealed that both extracts exerted no cytotoxicity on the cells (based on 80% viability). In the nitric oxide (NO) production inhibition experiment, inhibition of NO production was determined to be 15.42% more when exposed to ethanol extract as compared to water extract. Furthermore, the ethanol extract exerted greater inhibition of inflammatory cytokines interleukin (IL)-1β, IL-6, and tumor necrosis factor-α production (9.39%, 11.87%, and 14.49% more, respectively) when compared to the water extract. Due to the good antioxidant activity and potential for inhibiting NO and inflammatory cytokine production, B. populeum ethanol extracts are prospective sources of anti-inflammatory compounds.

Development of Functional Halogenated Phenylpyrrole Derivatives (기능성 할로겐화 페닐피롤 )

  • Min-Hee Jung;Hee Jeong Kong;Young-Ok Kim;Jin-Ho Lee
    • Journal of Life Science
    • /
    • v.33 no.10
    • /
    • pp.842-850
    • /
    • 2023
  • Pyrrolnitrin, pyrrolomycin, and pyoluteorin are functional halogenated phenylpyrrole derivatives (HPDs) derived from microorganisms with diverse antimicrobial activities. Pyrrolnitrin is a secondary metabolite produced from L-tryptophan through four-step reactions in Pseudomonas fluorescens, Burkholderia cepacia, Serratia plymuthica, etc. It is currently used for the treatment of superficial dermatophytic fungal infections, has high antagonistic activities against soil-borne and foliar fungal infections, and has many industrial applications. Since pyrrolnitrin is easily decomposed by light, it is difficult to widely use it outdoors. As an alternative, fludioxonil, a synthetically produced non-systemic surface fungicide that is structurally similar and has excellent light stability, has been commercialized for seed and foliar treatment of plants. However, due to its high toxicity to aquatic organisms and adverse effects in human cell lines, many countries have established maximum residue levels and strictly control its levels. Pyrrolomycin and pyoluteorin, which have antibiotic/antibiofilm activity against Gram-positive bacteria and high anti-oomycete activity against the plant pathogen Pythium ultimum, respectively, were isolated and identified from microorganisms. This review summarizes the biosynthesis and production of natural pyrrolnitrin derived from bacteria and the characteristics of synthetic fludioxonil and other natural phenylpyrrole derivatives among the HPDs. We expect that a plethora of highly effective, novel HPDs that are safe for humans and environments will be developed through the generation of an HPD library by microbial biosynthesis and chemical synthesis.

Anti-aging Effect of Akebia quinata Decaisne Ethanol Extract (으름덩굴 에탄올 추출물의 항노화 효과)

  • Yu Jin Kim;Soon Hyun Kwon;Ji Hyun Song;So Mi Lee;Yong Min Kim
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.50 no.1
    • /
    • pp.67-75
    • /
    • 2024
  • Skin aging progresses due to external factors such as ultraviolet rays and infections. These factors cause skin fibroblasts to secrete proteolytic enzymes, matrix metalloproteinases (MMPs). MMPs induce the degradation of collagen located in the extracellular matrix, directly influencing aging. The stems of Akebia quinata Decaisne have been reported to have antioxidant and anti-inflammatory effects. However, the anti-aging effect of Akebia quinata Decaisne stem ethanol extract (AQSEE) is not known. Therefore, we studied the TNF-α-induced MMP-1 inhibitory effect in human fibroblasts. When the cell viability of AQSEE was confirmed through MTT asaay, it showed no toxicity up to 400 ㎍/mL. The inhibition of MMP-1 mRNA and protein secretion was confirmed through RT-qPCR and ELISA, and results showed a significant decrease at concentrations of 100, 200, 400 ㎍/mL. We also confirmed by Western blotting that phosphorylation of MAPKs signaling pathway and transcription factors was reduced. As a result, phosphorylation of p38, c-Jun, p65 was significantly decreased at all concentrations. DPPH and ABTS assays were performed to confirm the radical scavenging ability of AQSEE, and the results showed a significant decrease at all concentrations. The results of this study confirmed the MMP-1 inhibitory effect and radical scavenging ability, which suggests that it can be used as an anti-aging substance.

Genetic Studies on the Sea Urchin Embryogenesis and Skeletogenesis (성게의 발생과 뼈대형성의 유전학적 연구)

  • Lee, Youn-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.6 no.4
    • /
    • pp.265-273
    • /
    • 2001
  • The sea urchin has been used as sea food in many countries. This species has also been an important organism of embryological studies for more than a century. In recent years, sea urchin embryos are being used as testing materials for toxicity of pollutants and toxins. Usefulness of sea urchin embryos as experimental models comes from the easiness in obtaining sea urchin samples and a lot of gametes, in rearing embryos in the laboratory, in observing the cellular movement and organ formation during the embryogenesis and in manipulating blastomeres and genetic maferials. The sea urchin in itself is a key organism for the understanding of deuterostome evolution from the protostomes and of indirect development of marine invertebrates which undergo the planktotrophic larval stage. A fertilized sea urchin egg goes through rapid cleavage and becomes a 60 cell embryo 7hr after fertilization. It then develops into a morula, a blastula, a gastrula and finally a pluteus larva approximately 70 hr after fertilization. At the 60 cell stage, the embryo comprises of five territories that express territory-speciflc genes and later form different organs. Micromeres at the vegetal pole ingress into the blastoceol and become the primary mesenchyme cells(PMCs). PMCs express genes involved in skeletogenesis such as SM30, SM37, SM50, PM27, msp130. Among the genes, SM37 and SM50 are considered to be members of a gene family which is characterized by early blastula expression, Glycine-Proline-Glutamine rich repeat structures and spicule matrix forming basic proteins. Genetic studies on the sea urchin embryos help understand the molecular basis of indirect development of marine invertebrates and also of the biomineralization common to the animal kingdom.

  • PDF

Relationship between Gb3 Expression and Cytotoxicity of Shiga-like Toxin I (Shiga-like Toxin I의 세포독성과 수용체 Gb3 발현과의 관계)

  • Lim, Suk-Hwan;Kim, Gi-Young;Kim, Hyung-Chun;Kim, Young-Hee;Son, Yong-Hae;Oh, Yang-Hyo;Park, Yeong-Min
    • Clinical and Experimental Pediatrics
    • /
    • v.46 no.2
    • /
    • pp.143-153
    • /
    • 2003
  • Purpose : Infection with Shiga-like toxin (SLT)-producing Escherichia coli, an emerging human pathogen found particularly in young children under 5 years of age, causes a spectrum of illnesses with high morbidity and mortality, ranging from diarrhea to hemorrhagic colitis and hemolytic uremic syndrome. Host mediators play an important role in the pathogenesis of SLT-I toxicity. The experiments described here were designed to investigate the effect of SLT-I on TNF-${\alpha}$ production and to understand the effect of TNF-${\alpha}$ on GB3 expression. We also further examine the relationship between the Gb3 level and the differential susceptibility of cells to the cytotoxic action of SLT-I. Methods : The effect of purified SLT-1 from E. coli O157 : H7 (ATCC 43890) on tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) production in Raw264.7 cells was investigated. Many mediators regulate endothelial cell membrane expression of the glycolipid globotriaosyleramide (Gb3), which serves as the toxin receptor, suggesting that the host response to the toxin or other bacterial products may contribute to pathogenesis by regulating target cell sensitivity to the toxins. Therefore, the relationships between Gb3 expression and cytotoxicity against SLT-I on three types of cells were evaluated. Results : Detectable levels of TNF-${\alpha}$ were produced as early as six hours after induction and continued to increase during 48 hours by SLT-I. It was also found that Vero cells and dendritic cells (DC2.4 cells) expressed high levels of Gb3, 83% and 68%, respectively, and that Raw264.7 cells had a low level of Gb3 (29%) and appeared refractory to cytotoxicity against SLT-I. Vero cells and DC2.4 cells expressing high levels of Gb3 were highly susceptible to SLT-I. Furthermore, macrophages showed a resistance to SLT-I cytotoxicity, despite the fact that Gb3 expression was enhanced. Conclusion : These results strongly suggest that the expression of Gb3 is necessary but not sufficient to confer sensitivity of macrophages to SLT-I and further underpin the important role of SLT-I and its Gb3 receptors in the pathogenesis of E. coli O157 infection.

The effect of chitosan/ACS on bone regeneration in rat calvarial defects (백서두개골 결손부에서 키토산/흡수성 콜라겐 전달체의 골재생)

  • Kim, Soo-Kyoung;Suk, Hun-Joo;Kim, Chang-Sung;Cho, Kyoo-Sung;Chai, Jung-Kiu;Kim, Chong-Kwan;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.33 no.3
    • /
    • pp.457-474
    • /
    • 2003
  • The ultimate objective of periodontal treatment is to get rid of an on-going periodontal disease and further regenerate the supporting tissue, which is already destroyed, functionally. Currently, the bone grafting operation using various kinds of bone grafting materials and the operation for induced regeneration of periodontal tissue using the blocking membrane are performed for regeneration of the destroyed periodontal tissue. However, there are respective limitations Galenical preparations, which are used for regeneration of periodontal of tissue, has less risk of rejective reaction or toxicity that may be incidental to degradation and their effect is sustainable. Thus, in case they are applicable to a clinic, they can he used economically. Chitosan has such compatibility, biological actions including antibacterial activity, acceleration of wound treatment, etc., and excellent mechanical characteristics, which has recently aroused more interest in it. Also, it has been reported that it promotes osteogenesis directly or indirectly by functioning as a matrix to promote migration and differentiation of a specific precussor cell (for example, osteoblast) and further inhibiting the function of such a cell as fibroblast to prevent osteogenesis. In this study, the pure chitosan solution, which was obtained by purifying chitosan, was used. However, since this chitosan is of a liquiform, it is difficult to sustain it in a defective region. It is, therefore, essential to use a carrier for delivering chitosan to, and sustaining it gradually in the defective region. In the calvarial defect model of the Sprague-Dawley rat, it is relatively easy to maintain a space. Therefore, in this study, the chitosan solution with which ACS was wetted was grafted onto the defective region, For an experimental model, a calvarial defect of rat m s selected, and a critical size of the defective region was a circular defect with a diameter of 8 mm. A group in which no treatment was conducted for the calvarial defect was set as a negative control group. Another group in which treatment was conducted with ACS only was set as a positive control group (ACS group). And another group in which treatment was conducted was conducted with by grafting the pure chitosan solution onto the defective region through ACS which was wetted with the chitosan solution was set an experimental group (Chitosan/ACS group). Chitosan was applied to the Sprague-Dawley rat's calvarial bone by applying ACS which was wetted with the chitosan solution, and each Sprague-Dawley rat was sacrificed respectively 2 weeks and 8 weeks after the operation for such application. Then, the treatment results were compared and observed histologically and his tometrically. Thereby, the following conclusions were obtained. 1. In the experimental group, a pattern was shown that from 2 weeks after the operation, vascular proliferation proceeded and osteogenesis proceeded through osteoblast infiltration, and at 8 week after the operation, ACS was almost absorbed, the amount of osteogensis was increased and many osteoid tissue layers were observed. 2. At 2 weeks after the operation, each amount of osteogenesis appeared to be 8.70.8 %, 13.62.3 % and 4.80.7 % respectively in the experimental group, the positive control group and the negative control group. Accordingly, it appeared to be higher in the Experimental group and the positive control group than in the negative control group, but there was no significant difference statistically (p<0.01). 3. At 8 weeks after the operation, each amount of osteogenesis appeared to be 62.26.1%, 17.42.5 % and 8.21.4 % respectively in the experimental group, the positive control group and the negative control group. Accordingly, it appeared to be substantially higher in the experimental group than in the positive control group and the negative control group, and there was a significant difference statistically (p<0.01). As a result of conducting the experiment, when ACS was used as a carrier for chitosan, chitosan showed effective osteogenesis in the perforated defective region of the Sprague-Dawley rat's calvarial bone.

Mechanisms of Tributyltin-induced Leydig Cell Apoptosis (유기주석화합물이 웅성생식세포주에 미치는 영향)

  • Lee, Kyung-Jin;Kim, Deok-Song;Ra, Myung-Suk;Wui, Seong-Uk;Im, Wook-Bin;Park, Hueng-Sik;Lee, Jong-Bin
    • Environmental Analysis Health and Toxicology
    • /
    • v.18 no.2
    • /
    • pp.89-94
    • /
    • 2003
  • Tributyltin (TBT) used world-wide in antifouling paints for ships is a widespread environmental pollutant and cause reproductive organs atrophy in rodents. At low doses, antiproliferative modes of action have been shown to be involved, whereas at higher doses apoptosis seems to be the mechanism of toxicity in reproductive organs by TBT. In this study, we investigated that the mechanisms underlying DNA fragmentation induced by TBT in the rat leyding cell line, R2C. Effects of TBT on intracellular Ca$\^$2+/ level and reactive oxygen species (ROS) were investigated in R2C cells by fluorescence detector. TBT significantly induced intracellular Ca$\^$2+/ level in a time-dependent manner. The rise in intracellular Ca$\^$2+/ level was followed by a time-dependent generation of reactive oxygen species (ROS) at the cytosol level. Simultaneously, TBT induced the release of cytochrome c from the mitochondrial membrane into the cytosol. Furthermore, ROS production and the release of cytochrome c were reduced by BAPTA, an intracellular Ca$\^$2+/ chelator, indicating the important role of Ca$\^$2+/ in R2C during these early intracellular events. In addition, Z-DEVD FMK, a caspase-3 inhibitor, decreased apoptosis by TBT. Taken together, the present results indicated that the apoptotic pathway by TBT might start with an increase in intracellular Ca$\^$2+/ level, continues with release of ROS and cytochrome c from mitochondria, activation of caspases,and finally results in DNA fragmentation.

Embryotoxicity and Teratogenicity of Excess Zinc on Xenopus laevis (과량의 아연에 의한 아프리카 발톱개구리 (Xenopus laevis)의 배발생 이상과 독성)

  • Yoon, Chun-Sik;Jin, Jung-Hyo;Cheong, Seon-Woo
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.1 s.102
    • /
    • pp.83-94
    • /
    • 2003
  • Concentrated releases of zinc into water usually results from discharges associated with industrial purpose. The released zinc into soil is corroded and released into water. In aquatic environment, exess zinc is toxic to the organisms and causes the growth inhibition and malformation of them as a heavy metal. In this study, excess zinc toxicity was tested by FETAX (frog embryo teratogenetic assay with Xenopus)as in vivo system. Xenopus embryos at st.9 were exposed to $100{\sim}900\;{\mu}M$ of zinc for 7 days and 81% of individuals were survived in 100 ${\mu}M$, and 25% were survived in 1000M of zinc solution. In external malformations, swelled belly and intestinal dysplasia were common, and all of tested individuals showed these malformations in 200 ${\mu}M$ or higher concentration of zinc. In 400 ${\mu}M$ or higher concentration, all of tested tadpoles showed faded heart. Also, hypo-pigmentation, lens hernia and loose digestive track were very frequently found in 100 ${\mu}M$ of zinc. The histological study with paraffin section of zinc treated tadpoles showed following abnormalities; regeneration of photoreceptor on retina, reduced vitreous chamber in eye, reduction of red blood cells in heart, abnormal liver, swelling of pronephric cell, muscle dysplasia and palatal papilloma. These abnormalities may be caused by the degeneration of mitochondria, inhibition of cell adhesion, and the formation of leghemoglobin by zinc due to the substitution of $Ca^{2+}$ by $Zn^{2+}$. The body length was reduced due to the excess zinc. From a statistical result, body lengths of 300 ${\mu}M$ or higher concentrative g개ups was significantly reduced comparing that of control group. Recently, many spontaneous malformations and reduction of amphibians are reported, From the results of present study, excess zinc mi호t be a factor of amphibian reduction, and the control of zinc discharges is very important.