• Title/Summary/Keyword: Cell synchronization

Search Result 148, Processing Time 0.026 seconds

Effect of a Hot Water Extract of Sparasis Crispa on the Expression of Tight Junction-Associated Genes in HaCaT Cells (꽃송이버섯 열수추출물이 HaCaT의 세포 연접 관련 유전자의 발현에 대한 영향)

  • Han, Hyo-Sang
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.9 no.2
    • /
    • pp.83-92
    • /
    • 2021
  • Purpose : Keratinocytes are the main cellular components involved in wound healing during re-epithelization and inflammation. Dysfunction of tight junction (TJ) adhesions is a major feature in the pathogenesis of various diseases. The purpose of this study was to identify the various effects of a Sparassis crispa water extract (SC) on HaCaT cells and to investigate whether these effects might be applicable to human skin. Methods : We investigated the effectiveness of SC on cell HaCaT viability using MTS. The antioxidant effect of SC was analyzed by comparing the effectiveness of ABTS to that of the well-known antioxidant resveratrol. Reverse-transcription quantitative polymerase chain reaction (qRT-PCR) is the most widely applied method Quantitative RT-PCR analysis has shown that SC in HaCaT cells affects mRNA expression of tight-junction genes associated with skin moisturization. In addition, Wound healing is one of the most complex processes in the human body. It involves the spatial and temporal synchronization of a variety of cell types with distinct roles in the phases of hemostasis, inflammation, growth, re-epithelialization, and remodeling. wound healing analysis demonstrated altered cell migration in SC-treated HaCaT cells. Results : MTS analysis in HaCaT cells was found to be more cytotoxic in SC at a concentration of 0.5 mg/㎖. Compared to 100 µM resveratrol, 4 mg/㎖ SC exhibited similar or superior antioxidant effects. SC treatment in HaCaT cells reduced levels of claudin 1, claudin 3, claudin 4, claudin 6, claudin 7, claudin 8, ZO-1, ZO-2, JAM-A, occludin, and Tricellulin mRNA expression by about 1.13 times. Wound healing analysis demonstrated altered cell migration in SC-treated HaCaT cells and HaCaT cell migration was also reduced to 73.2 % by SC treatment. Conclusion : SC, which acts as an antioxidant, reduces oxidative stress and prevents aging of the skin. Further research is needed to address the effects of SC on human skin given the observed alteration of mRNA expression of tight-junction genes and the decreased the cell migration of HaCaT cells.

Production of Transgenic Porcine haboring the Human Erythropoietin(EPO) Gene (사람 조혈인자 유전자(Human Erythropoietin Gene)를 도입한 형질전환돼지 생산)

  • 이연근;박진기;민관식;이창현;성환후;전익수;임석기;양병철;임기순
    • Korean Journal of Animal Reproduction
    • /
    • v.26 no.2
    • /
    • pp.95-104
    • /
    • 2002
  • This study was performed during the four seasons for the production of transgenic pigs containing the human erythropoietin(hEPO) transgene. Purebred Landrace gilts and sows approximately 8∼15 months of age (n=42) were used fur the collection of 1-cell zygotes for DNA microinjection and transfer. Retrospectively, estrus synchronization and superovulation schemes were evaluated to assess practicality for zygote collection. Synchronization and superovulation procedures were used that cyclic gilts were synchronized with 20mg altrenogest (ALT) per day for 9days after PG600 administration followed by superovulation with 1500IU pregnant mares serum gonadotropin (PMSG) and 500IU human chorionic gonadotrophin (hCG). Preparation of recombinant gene for microinjection is mice whey acidic protein promoter (mWAP) linked to human erythropoietin (hEPO) gene. After hormone treatment, 650 embryos were collected from 23 donors and 83.1% (540/650) embryos were in 1-cell stage which can be visualized the pronuclei for DNA microinjection. A total of 543 DNA microinjected embryos fiom donors were transferred to 19 synchronized recipients, seven of them maintained pregnancy and delivered 47 piglets. One of the 47 offsprings were determined to have transgene by PCR analysis. The overall rate of transgenic production was 2.13% (tansgenic/offspring). This study provides the success and useful information regarding production of transgenic pig for bioreactor research.

Production of Transgenic Pig Harboring the Cellulase Digest Gene(CelD) (섬유소 분해효소 유전자가 도입된 형질전환 돼지 생산)

  • 박진기;이연근;민관식;이창현;이향흔;김광식;장원경;김진회;이훈택
    • Korean Journal of Animal Reproduction
    • /
    • v.26 no.2
    • /
    • pp.87-94
    • /
    • 2002
  • This study was performed during the four seasons for the production of transgenic pigs containing the Cellulase Digest Gene. Purebred Landrace gilts and sows approximately 8∼15 months of age (n=126) were used for the collection of 1-cell zygotes for DNA microinjection and transfer. Retrospectively, estrus synchronization and superovulation schemes were evaluated to assess practicality fur zygote collection. Synchronization and superovulation procedures were used that cyclic gilts were synchronized with 20mg altrenogest (ALT) per day for 9 days after PG600 administration followed by superovulation with 1000 IU pregnant mares serum gonadotropin (PMSG) and 750IU human chorionic gonadotrophin (hCG). The cellulase digestion gene for microinjection is rat elasterase promoter (rEl) linked to CelD gene. After hormone treatment, 1,422 embryos were collected from 91 donors and 95.6% (1,359/1,422) embryos were in 1-cell stage which can be visualized the pronuclei for DNA microinjection. A total of 725 DNA microinjected embryos transferred into 35 recipients and produced 65 piglets from 13 litters. Pregnancy rate according to the number of transferred embryos to recipients was higher the group which received 21 to 24 embryos (50.0%) than other groups 20.0% in less and 33.3% in more. A tail tissue was collected from 65 piglets for biopsy. PCR screening was performed on each DNA sample using two separate sets of primers specific for the 5'- and 3'-flanking region of the rEl-CelD gene. Five of the 65 piglets (7.69%) were positive for the transgene. This study provide useful information regarding production of transgenic pig for bioreactor research.

Detection of Mitotic Centromere-Associated Kinesin (MCAK) During Cell-Cycle Progression of Human Jurkat T Cells Using Polyclonal Antibody Raised Against Its N- Terminal Region Overexpressed in E. coli

  • Jun, Do-Youn;Rue, Seok-Woo;Kim, Byung-Woo;Kim, Young-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.6
    • /
    • pp.912-918
    • /
    • 2003
  • Mitotic centromere-associated kinesin (MCAK), which is a novel kinesin with a central motor domain, is believed to playa role in mitotic segregation of chromosome during the M phase of the cell cycle. In the present study, it is shown that a rabbit polyclonal antibody has been produced using the N-terminal region (187 aa) of human MCAK expressed in E. coli as the antigen. To express the N-terminal region in E. coli, the MCAK cDNA fragment encoding N-terminal 187 aa was obtained by PCR and was then inserted into the pET 3d expression vector. Molecular mass of the N-terminal region overexpressed in the presence of IPTG was 23.2 kDa on SDS-PAGE, and the protein was insoluble and mainly localized in the inclusion body that could be easily purified from the other cellular proteins. The N-terminal region was purified by electro-elution from the gel after the inclusion body was resolved on the SDS-PAGE. The antiserum obtained after tertiary immunization with the purified protein specifically recognized HsMCAK when subjected to Western blot analysis, and showed a fluctuation of the protein level during the cell cycle of human Jurkat T cells. Synchronization of the cell-cycle progression required for recovery of cells at a specific stage of the cell cycle was performed by either hydroxyurea or nocadazole, and subsequent release from each blocking at 2, 4, and 7 h. Northern and Western analyses revealed that both mRNA and protein of HsMCAK reached a maximum level in the S phase and declined to a basal level in the G1 phase. These results indicate that a polyclonal antibody raised against the N-terminal region (187 aa) of HsMCAK, overexpressed in E. coli, specifically detects HsMCAK (81 kDa), and it can analyze the differential expression of HsMCAK protein during the cell cycle.

Study on Production of Cloned Animals by Recycling Nuclear Transplantation II. Improved Second Generation Cloning of Rabbit Embryos Using Donor Nuclei with Synchronized Cell Cycles (반복핵이식에 의한 복제동물 생산에 관한 연구 II. 토끼에서 공핵배의 세포주기 조절에 의한 제2세대 복제배의 생산효율 개선)

  • 이효종;전병균;박충생;최상용;윤창현;강대진
    • Journal of Embryo Transfer
    • /
    • v.10 no.1
    • /
    • pp.73-82
    • /
    • 1995
  • large scale production of cloned embryos requires the technology of multiple generation nuclear transplantation(NT) using NT embryos as the subsequent donor nuclei. The purposes of this study were producing the second generation cloned rabbit embryos, and also to determine the electrofusion rate and in vitro developmental potential comparatively in the cloned embryos of the first and second NT generation. The embryos of 16-cell stage were collected from the mated does by flushing oviducts with Dulbecco's phosphate buffered saline(D-PBS) containing 10% fetal calf serum(FCS) at 47 hours after hCG injection In the first generation NT, the nuclear donor embryos were synchronized in the phase of Gi /S transition of 32-cell stage. The first generation NT embryos which were developed to 8-cell were synchronized in Gi /S transition phase of the following 16-cell stage and used as donor nuclei for second generation Synchronization of the cell cycle of blastomeres was induced, first, using an inhibitor of microtuble polymerization, colcemid for 10 hours to arrest blastomeres in M phase, and secondly, using a DNA synthesis inhibitor, aphidicolin for 1.5 to 2 hours to arrest them in Gi /S transition boundary. The recipient cytoplasms were obtained by removing the nucleus and the first polar body from the oocytes collected at 14 hours after hCG injection. The separated donor blastomeres were injected into the enucleated recipient oocytes by micromanipulation and were electrofused by electrical stimulation of three pulses for 60 $\mu$sec at 1.25 kV /cm in 0.28 M rnannitol solution The fused oocytes were co-cultured with a monolayer of rabbit oviductal epithelial cells in M-199 solution containing 10% FCS for 120 hours at 39$^{\circ}C$ in a 5% $CO_2$ incubator. Following in vitro culture of the first and second generation cloned embryos to blastocyst stage, they were stained with Hoechst 33342 dye for counting the number of blastomeres by fluorescence microscopy. The results obtained were summarized as follows: 1. The electrofusion rate was found to be similar as 79.4 and 91.5% in the first and second generation NT rabbit embryos, respectively. 2. The in vitro developmental potential to blastocyst stage of the second generation NT embryos (23.3%) was found significantly(p<0.05) lower, compared with that of the first generation NT embryos (56.8%). 3. The mean blastomeres counts of embryos developed to blastosyst stage following in vitro culture for 120 hours and also their daily cell cycles during the culture period were decreased significantly (p<0.05) to 104.3 cells and 1.33 cylces in the second NT generation, compoared with 210.4 cells and 1.54 cycles in the first NT generation, respectively.

  • PDF

Effects of Recipient Oocytes and Donor Cells Condition on in Vitro Development of Cloned Embryos after Interspecies Nuclear Transfer with Caprine Somatic Cell (산양의 이종간 핵이식에 있어서 수핵난자에 따른 공여세포의 조건이 핵이식란의 체외발달에 미치는 영향)

  • 이명열;박희성
    • Reproductive and Developmental Biology
    • /
    • v.28 no.1
    • /
    • pp.13-20
    • /
    • 2004
  • This study was conducted to investigate the developmental ability of caprine embryos after somatic cell interspecies nuclear transfer. Donor cells were obtained from an ear-skin biopsy of a caprine, digested with 0.25% trypsin-EDTA in PBS, and primary fibroblast cultures were established in TCM-199 with 10% FBS. After maturation, expanded cumulus cells were removed by vigorous pipetting in the presence of 0.3% hyaluronidase. The matured oocytes were dipped in D-PBS plus 10% FBS+7.5 $\mu\textrm{g}$/ml cytochalasin B and 0.05 M sucrose. The reconstructed oocytes were electrically fused with donor cells in 0.3 M mannitol fusion medium. After the electofusion, embryos were activated by electric stimulation. Interspecies nuclear transfer embryos with bovine cytoplasts were cultured in TCM-199 medium supplemented with 10% FBS including bovine oviduct epithelial cells for 7∼9 day. On the other hand, the NT embryos with porcine cytoplasts were cultured in NCSU-23 medium supplemented with 10% FBS for 6∼8 day at $39^{\circ}C, 5% CO_2$ in air. In caprine-bovine NT embryos, the cleavage(2-cell) rate was 36.8% in confluence and 43.8% in serum starvation. The developmental rate of morula- and blastocyst-stage embryos was 0.0% in confluence and 18.8% in serum starvation. In caprine-porcine NT embryos, the cleavage(2-cell) rate was 76.7% in confluence and 66.7% in serum starvation. The developmental rate of morula and blastocyst stage embryos was 3.3% in confluence and 3.0% in serum starvation, and no significant difference was observed in synchronization treatment between donor cells. In caprine-bovine NT embryos, the cleavage(2-cell) rate of cultured donor cells was 30.8% and 17.6% in 5∼9 and 10∼14 passage(P<0.05). The developmental rate of morula and blastocyst stage embryos were significantly higher(P<0.05) in 5∼9 passage(23.1%) than in 10∼14 passage(0.0%) of cultured donor cells. In caprine-porcine NT embryos, the cleavage rate was significantly higher(P<0.05) in 5∼9 passage(86.7%) than in 10∼14 passage(50.0%) of cultured donor cells. The developmental rate of morula and blastocyst stage embryos were 3.3 and 0.0% in 5∼9 and 10∼14와 passage of cultured donor cells. In caprine-bovine NT embryos, the developmental rate of morula and blastocyst stage embryos were 22.6% in interspecies nuclear transfer, 33.9% in in vitro fertilization and 28.1% in parthenotes, which was no significant differed. The developmental rate of morula and blastocyst stage embryos with caprine-porcine NT embryos were lower(P<0.05) in interspecies nuclear transfer(5.1%) than in vitro fertiltzation(26.9%) and parthenotes(37.4%).

Re-Cloning by Somatic Cell Nuclear Transfer from a Cloned Korean Native Goat (복제 산양(진순이)의 체세포 핵이식에 의한 Re-Cloning에 관한 연구)

  • Jung, S.Y.;Park, H.S.
    • Journal of Embryo Transfer
    • /
    • v.22 no.2
    • /
    • pp.89-95
    • /
    • 2007
  • The present study was conducted to examine some factors affecting in vitro development and fecundity of embryos recloned with somatic cell nuclear transfer (SCNT). Fibroblast cells retrieved from the ear of a 3-week-old, cloned Korean goat (Jinsoonny) were used as karyoplast donors and serum-starvation was conducted in tissue culture medium (TCM)-199 supplemented with 0.5% FBS. Recipient oocytes were surgically collected by flushing the oviducts 35 h after hCG injection following FSH priming. The zonae pellucidae of the oocytes were partially perforated with a laser drill and a donor cell was transferred into an enucleated oocyte. The couplets were electrically fused and activated by ionomycin (5 min) and 6-DMAP (4 h). The reconstructed embryos were cultured in mSOF medium containing 0.8% BSA at $39^{\circ}C$ in an atmosphere of 5% $CO_2$, 5% $%O_2$, 90% $N_2$ for 12 to 15 h. Re-cloned embryos (2- to 4-cell stages) were surgically transferred into the oviducts of the recipients and pregnancy was subsequently diagnosed by progesterone assay and ultrasound on Days 21 and 63 of pregnancy. The fusion rate following 1st fusion pulse was higher (p<0.05) in 2nd cloning (65.9%) compared to 1st cloning (51.0%), but it was not different in the other groups. The rate of cleavage after fusion was significantly higher (p<0.05) in 1st (77.7%) than in 2nd cloning (56.0%). A total of 175 re-cloned embryos were transferred into 28 recipients. On day 21 and 60 after transfer, 11 (39.3%) and 4 recipients (17.4%) were pregnancy, respectively. In comparison of pregnancy rate by estrous synchronization, a total of 66 and 109 re-cloned embryos were transferred into 11 recipients in natural estrus and 17 recipients in induced estrus, respectively. Five (45.4%) and 2 recipients (18.2%) in natural estrus were pregnant on days 21 and 63 while 6 (35.3%) and 2 (11.8%) recipients in induced estrus were pregnant, respectively. These results show that recloning of goat can be achieved by SCNT and estrous synchronization between donor and recipient animals may be one of the major factors affecting success rate.

Enhanced Spatial Covariance Matrix Estimation for Asynchronous Inter-Cell Interference Mitigation in MIMO-OFDMA System (3GPP LTE MIMO-OFDMA 시스템의 인접 셀 간섭 완화를 위한 개선된 Spatial Covariance Matrix 추정 기법)

  • Moon, Jong-Gun;Jang, Jun-Hee;Han, Jung-Su;Kim, Sung-Soo;Kim, Yong-Serk;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5C
    • /
    • pp.527-539
    • /
    • 2009
  • In this paper, we propose an asynchonous ICI (Inter-Cell Interference) mitigation techniques for 3GPP LTE MIMO-OFDMA down-link receiver. An increasing in symbol timing misalignments may occur relative to sychronous network as the result of BS (Base Station) timing differences. Such symbol synchronization errors that exceed the guard interval or the cyclic prefix duration may result in MAI (Multiple Access Interference) for other carriers. In particular, at the cell boundary, this MAI becomes a critical factor, leading to degraded channel throughput and severe asynchronous ICI. Hence, many researchers have investigated the interference mitigation method in the presence of asynchronous ICI and it appears that the knowledge of the SCM (Spatial Covariance Matrix) of the asynchronous ICI plus background noise is an important issue. Generally, it is assumed that the SCM estimated by using training symbols. However, it is difficult to measure the interference statistics for a long time and training symbol is also not appropriate for MIMO-OFDMA system such as LTE. Therefore, a noise reduction method is required to improve the estimation accuracy. Although the conventional time-domain low-pass type weighting method can be effective for noise reduction, it causes significant estimation error due to the spectral leakage in practical OFDM system. Therefore, we propose a time-domain sinc type weighing method which can not only reduce the noise effectively minimizing estimation error caused by the spectral leakage but also implement frequency-domain moving average filter easily. By using computer simulation, we show that the proposed method can provide up to 3dB SIR gain compared with the conventional method.

Design and Implementation of Automatic Installation System for PDA (휴대 정보터미널을 위한 애플리케이션 자동설치 시스템의 설계 및 구현)

  • 나승원;오세만
    • The Journal of Society for e-Business Studies
    • /
    • v.8 no.3
    • /
    • pp.165-176
    • /
    • 2003
  • Instead of existing cell phones, PDAs are observed as leading wireless Internet devices recently Numerous applications are developed by extended usage of PDAs and it should be installed appropriately according to devices. Furthermore, when battery is discharged, all data stored in RAM(Random Access Memory) becomes obsolete. So it should be recovered or reinstalled from flash memory, backup media or something. In this paper, we present an automatic application installation system(PAIS : PDA Automatic Installation System) to solve problems that users have to install applications by themselves whenever it is necessary. With this system, users feel comfortable by saving time and effort to install each applications and application development companies save cost needed to make materials illustrating installation process. Consequently PAIS may flourish wireless Internet business.

  • PDF

Distinct Regional and Cellular Localization of Hyperpolarization-activated Cyclic Nucleotide-gated Channel 1 in Cerebellar Cortex of Rat

  • Kwon, Young-Joon;Kim, Tae-Sung
    • Journal of Korean Neurosurgical Society
    • /
    • v.42 no.3
    • /
    • pp.205-210
    • /
    • 2007
  • Objective : Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels mediate the hyperpolarization-activated currents (Ih) that participate in regulating neuronal membrane potential and contribute critically to pacemaker activity, promoting synchronization of neuronal networks. However, distinct regional and cellular localization of HCN channels in the brain have not been precisely defined. Aim of this study was to verify the precise cellular location of HCN1 channels in rat cerebellum to better understand the physiological role these channels play in synaptic transmission between CNS neurons. Methods : HCN1 expression in rat brain was analyzed using immunohistochemistry and electron-microscopic observations. Postsynaptic density-95 (PSD-95), otherwise known as locating and clustering protein, was also examined to clarify its role in the subcellular location of HCN1 channels. In addition, to presume the binding of HCN1 channels with PSD-95, putative binding motifs in these channels were investigated using software-searching method. Results : HCN1 channels were locally distributed at the presynaptic terminal of basket cell and exactly corresponded with the location of PSD-95. Moreover, nine putative SH3 domain of PSD-95 binding motifs were discovered in HCN1 channels from motif analysis. Conclusion : Distinct localization of HCN1 channels in rat cerebellum is possible, especially when analyzed in conjunction with the SH3 domain of PSD-95. Considering that HCN1 channels contribute to spontaneous rhythmic action potentials, it is suggested that HCN1 channels located at the presynaptic terminal of neurons may play an important role in synaptic plasticity.