• Title/Summary/Keyword: Cell size model

Search Result 388, Processing Time 0.037 seconds

Models for Relative Density and Compressive Strength of Open-Cell Ceramics with Hollow Struts (공동골격을 가진 개방셀 세라믹스의 상대밀도와 압축강도 모델)

  • 정한남;현상훈
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.11
    • /
    • pp.1139-1150
    • /
    • 1997
  • A model for predicting the relative density and the compressive strength of open-cell ceramics with three-dimensional network structure was proposed through the interpretation of their macrostructure and fracture mechanics. The equation predicting the relative density was derived under the assumption that the open-cell structure was a periodic array of the tetrakaidecahedron unit cell consisting of cylindrical struts containing the internal hollow with the shape of a triangular prism. The model for compressive strength of open-cell ceramics with the hollow strut was also developed by modifying conventional model which based on fracture behavior of them subjected to the compressive stress. Both the relative density and the compressive strength were expressed in terms of the ratio of the strut diameter to the length together with the ratio of the hollow size to the strut diameter. The proposed model for the relative density and the compressive strength of the alumina-zirconia composite with open-cell structure were accorded well with the experimental values, whereas Gibson-Ashby and Zhang's model did not show such a good agreement.

  • PDF

A Genetic Algorithm for Manufacturing Cell Design Based on Operation Sequence (공정순서에 기초한 생산셀 설계를 위한 유전 알고리즘 접근)

  • 문치웅;김재균
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.23 no.3
    • /
    • pp.123-133
    • /
    • 1998
  • A cell design model based on operation sequence is proposed for maximizing the total parts flow within cells considering the data of Process plans for parts, Production volume, and cell size. A relationship between machines is calculated on the basis of the process plans for parts obtained from process plan sheets. Then the machines are classified into machine cells using the relationship. The model is formulated as a 0-1 integer programming and a genetic algorithm approach is developed to solve the model. The developed approach is tested and Proved using actual industrial data. Experimental results indicate that the approach is appropriate for large-size cell design problems efficiently.

  • PDF

A manufacturing cell design model and cell design support system based on workload (작업부하에 의한 생산셀 설계 모델과 셀설계지원시스템)

  • 문치웅;이상용
    • Korean Management Science Review
    • /
    • v.12 no.1
    • /
    • pp.51-60
    • /
    • 1995
  • This paper presents a workload based model and cell design support system (CDSS) in manufacturing cell design. The proposed model consider manufacturing factor such as machine capacity, production volume, process time, and cell size. Based on those information, workload is calculated and according to the workload, the relationship between machine and part is represented by the workload matrix. To form the manufacturing cell, correlation similarity coefficient (CSC) among machines are calculated and a pair of machines that has the highest value of CSC is assigned to a machine cell. Repeat the above steps until the desired manufacturing cells are obtained. Finally, a cell design support system that could increase the efficiency in the application of a proposed model is developed. The proposed model and CDSS are illustrated by a numerical example.

  • PDF

Optimal Sizing of the Manifolds in a PEM Fuel Cell Stack using Three-Dimensional CFD Simulations (3차원 CFD 시뮬레이션을 활용한 고분자전해질 연료전지 스택의 매니폴드 크기 최적화)

  • Jeong, Jeehoon;Han, In-Su;Shin, Hyun Khil
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.5
    • /
    • pp.386-392
    • /
    • 2013
  • Polymer electrolyte membrane (PEM) fuel cell stacks are constructed by stacking several to hundreds of unit cells depending on their power outputs required. Fuel and oxidant are distributed to each cell of a stack through so-called manifolds during its operation. In designing a stack, if the manifold sizes are too small, the fuel and oxidant would be maldistributed among the cells. On the contrary, the volume of the stack would be too large if the manifolds are oversized. In this study, we present a three-dimensional computational fluid dynamics (CFD) model with a geometrically simplified flow-field to optimize the size of the manifolds of a stack. The flow-field of the stack was simplified as a straight channel filled with porous media to reduce the number of computational meshes required for CFD simulations. Using the CFD model, we determined the size of the oxidant manifold of a 30 kW-class PEM fuel cell stack that comprises 99 cells. The stack with the optimal manifold size showed a quite uniform distribution of the cell voltages across the entire cells.

The Influence of Food Hydrocolloids on Changes in the Physical Properties of Ice Cream

  • Park, Sung-Hee;Hong, Guen-Pyo;Kim, Jee-Yeon;Choi, Mi-Jung;Min, Sang-Gi
    • Food Science and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.721-727
    • /
    • 2006
  • This study was carried out to investigate the effect of hydrocolloids on the changes in physical properties of a model ice cream. The model ice cream contained water, sugar, skin milk powder, com oil, and 4 different hydrocolloid stabilizers (gelatin, pectin, hydroxyethylstarch, locust bean gum), was manufactured in a batch type freezer. The following physical characteristics of ice cream were examined: flow behavior, overrun, air cell size, ice crystal size, and melt resistance. With regard to flow behavior, all of aged mixes had a lower apparent viscosity relative to the mix before aging, and ice cream mix containing locust bean gum had the highest viscosity. Air cell size was observed to range from 20 to $38\;{\mu}m$, and ice cream with locust bean gum showed the largest size. There was an inverse correlation between overrun and air cell size. The ice crystal sizes of all samples ranged from 25 to $35\;{\mu}m$. Ice cream with added pectin contained the smallest ice crystal size, which was significantly difference from other stabilizers (p<0.05), and resulted in superior melt resistance with increased melting time compared to other samples.

Detonation cell size model based on deep neural network for hydrogen, methane and propane mixtures with air and oxygen

  • Malik, Konrad;Zbikowski, Mateusz;Teodorczyk, Andrzej
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.424-431
    • /
    • 2019
  • The aim of the present study was to develop model for detonation cell sizes prediction based on a deep artificial neural network of hydrogen, methane and propane mixtures with air and oxygen. The discussion about the currently available algorithms compared existing solutions and resulted in a conclusion that there is a need for a new model, free from uncertainty of the effective activation energy and the reaction length definitions. The model offers a better and more feasible alternative to the existing ones. Resulting predictions were validated against experimental data obtained during the investigation of detonation parameters, as well as with data collected from the literature. Additionally, separate models for individual mixtures were created and compared with the main model. The comparison showed no drawbacks caused by fitting one model to many mixtures. Moreover, it was demonstrated that the model may be easily extended by including more independent variables. As an example, dependency on pressure was examined. The preparation of experimental data for deep neural network training was described in detail to allow reproducing the results obtained and extending the model to different mixtures and initial conditions. The source code of ready to use models is also provided.

Structural Transition of A-Type Zeolite: Molecular Dynamics Study

  • Song, Mee-Kyung;Chon, Hak-Ze
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.2
    • /
    • pp.255-258
    • /
    • 1993
  • Molecular dynamics (MD) calculations were carried out in order to investigate the effect of MD cell size to predict the melting phenomena of A-type zeolite. We studied two model systems: a pseudocell of $(T_2O_4Na)_n$, (L= 12.264 $^{\AA}$, N= 84) and a true-cell of (SiAlO$_4Na)_n$. (L= 24.528 $^{\AA}$, N= 672), where T is Si or Al. The radial and bond angle distribution functions of T(Si, Al)-O-T(Si, Al) and diffusion coefficients of T and O were reported at various temperatures. For the true-cell model, the melting temperature is below 1500 K and probably around 1000 K, which is about 600-700 K lower than the pseudocell model. Although it took more time (about 30 times longer) to obtain the molecular trajectories of the true-cell model than those of the pseudocell model, the true-cell model gave more realistic structural transition for the A-type zeolite, which agrees with experiment.

The of Rack with Modularized Cell considering Heterogeneous Unit Load Size in AS/RS (자동창고 Effectiveness 시스템에서 크기가 다른 저장단위를 고려한 모듈화 셀을 갖는 랙의 효과)

  • 이문환;이영해
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2000.04a
    • /
    • pp.1-4
    • /
    • 2000
  • In general, under the concept of unit load, Automated Storage/Retrieval Systems (AS/RS) have the rack of equal sized cells. However, they are inadequate and inefficient meeting the various sizes of customers' demands in today's business environment. Higher utilization and flexibility of warehouse storage can be achieved by using AS/RS with tile rack of modularized cell. In this paper, the model of AS/RS with the rack of modularized cell is proposed, and the effectiveness of proposed model is presented by way of numerical examples. The model developed in this research, as one type of AS/RS that is more flexible to the size and has higher space utilization than those of existing rack structure, could every useful for the storage of heterogeneous unit load sizes.

  • PDF

ASSESSMENT OF CORE BYPASS FLOW IN A PRISMATIC VERY HIGH TEMPERATURE REACTOR BY USING UNIT-CELL EXPERIMENT AND CFD ANALYSIS (단위-셀 실험과 전산유체해석을 통한 블록형 초고온가스로의 노심우회유량 평가)

  • Yoon, S.J.;Jin, C.Y.;Kim, M.H.;Park, G.C.
    • Journal of computational fluids engineering
    • /
    • v.14 no.2
    • /
    • pp.59-67
    • /
    • 2009
  • An accurate prediction of the bypass flow is of great importance in the VHTR core design concerning the fuel thermal margin. Nevertheless, there has not been much effort in evaluating the amount and the distribution of the core bypass flow. In order to evaluate the behavior and the distribution of the coolant flow, a unit-cell experiment was carried out. Unit-cell is the regular triangular section which is formed by connecting the centers of three hexagonal blocks. Various conditions such as the inlet mass flow rate, block combinations and the size of bypass gap were examined in the experiment. CFD analysis was carried out to analyze detailed characteristics of the flow distribution. Commercial CFD code FLUENT 6.3 was validated by comparing with the experimental results. In addition, SST model and standard k-$\varepsilon$ model were validated. The results of CFD simulation show good agreements with the experimental results. SST model shows better agreement than standard k-$\varepsilon$ model. Results showed that block combinations and the size of the bypass gap have an influence on the bypass flow ratio but the inlet mass flow rate does not.

A Sensitivity Analysis on Numerical Grid Size of a Three-Dimensional Hydrodynamic and Water Quality Model (EFDC) for the Saemangeum Reservoir (새만금호 3차원 수리.수질모델(EFDC)의 수치격자 민감도 분석)

  • Jeon, Ji Hye;Chung, Se Woong
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.1
    • /
    • pp.26-37
    • /
    • 2012
  • Multi-dimensional hydrodynamic and water quality models are widely used to simulate the physical and biogeochemical processes in the surface water systems such as reservoirs and estuaries. Most of the models have adopted the Eulerian grid modeling framework, mainly because it can reasonably simulate physical dynamics and chemical species concentrations throughout the entire model domain. Determining the optimum grid cell size is important when using the Eulerian grid-based three-dimensional water quality models because the characteristics of species are assumed uniform in each of the grid cells and chemical species are represented by concentration (mass per volume). The objective of this study was to examine the effect of grid-size of a three dimensional hydrodynamic and water quality model (EFDC) on hydrodynamics and mass transport in the Saemangeum Reservoir. Three grid resolutions, respectively representing coarse (CG), medium (MG), and fine (FG) grid cell sizes, were used for a sensitivity analysis. The simulation results of numerical tracer showed that the grid resolution affects on the flow path, mass transport, and mixing zone of upstream inflow, and results in a bias of temporal and spatial distribution of the tracer. With the CG, in particular, the model overestimates diffusion in the mixing zone, and fails to identify the gradient of concentrations between the inflow and the ambient water.