In order to analyze cell images, accurate segmentation of each cell is indispensable. However, the reality is that accurate cell image segmentation is not easy due to various noises, dense cells, and inconsistent shape of cells. Therefore, in this paper, we propose an algorithm that combines marker-based watershed segmentation and ellipse fitting method for glioblastoma cell segmentation. In the proposed algorithm, in order to solve the over-segmentation problem of the existing watershed method, the marker-based watershed technique is primarily performed through "seeding using local minima". In addition, as a second process, the concave point search using ellipse fitting for final segmentation based on the connection line between the concave points has been performed. To evaluate the performance of the proposed algorithm, we compared three algorithms with other algorithms along with the calculation of segmentation accuracy, and we applied the algorithm to other cell image data to check the generalization and propose a solution.
세포 분할 작업은 세포 이미지의 배경으로부터 세포 영역을 추출하는 작업으로 배양과정에 있는 살아있는 세포를 이미지화하여 분석하는 바이오 이미징 분야에서 기초적인 작업들 중 하나이다. 선명한 이미지의 경우 바이모덜 히스토그램 분포를 가지므로 Otsu와 같은 전역임계값 알고리즘을 이용하여 쉽게 세포분할 작업을 수행할 수 있지만 희미한 이미지의 경우는 정확한 세포 분할을 하기가 어렵다. 본 논문에서는 입력된 세포이미지의 히스토그램을 분석하여 히스토그램 분포에 따라 분류한 후 바이모덜 분포를 가지는 이미지의 경우 전역임계값 알고리즘을 적용하고 유니모덜 분포를 가지는 이미지의 경우 영역을 분할하여 부분 영역별로 다른 임계값을 적용하는 새포 분할 시스템을 개발하였다. 실험결과 제안한 시스템은 바이모덜 분포를 가지는 세포이미지 뿐만 아니라 유니모덜 분포를 가지는 세포 이미지에 대해서도 정확한 세포 분할 작업을 수행하였다.
Cell segmentation and counting represent one of the most important tasks required in order to provide an exhaustive understanding of biological images. Conventional features suffer the lack of spatial consistency by causing the joining of the cells and, thus, complicating the cell counting task. We propose, in this work, a cascade of networks that take as inputs different versions of the original image. After constructing a Gaussian pyramid representation of the microscopy data, the inputs of different size and spatial resolution are given to a cascade of deep convolutional autoencoders whose task is to reconstruct the segmentation mask. The coarse masks obtained from the different networks are summed up in order to provide the final mask. The principal and main contribution of this work is to propose a novel method for the cell counting. Unlike the majority of the methods that use the obtained segmentation mask as the prior information for counting, we propose to utilize the hidden latent representations, often called the high-level features, as the inputs of a neural network based regressor. While the segmentation part of our method performs as good as the conventional deep learning methods, the proposed cell counting approach outperforms the state-of-the-art methods.
As part of the cell division method, we proposed a method for segmenting images generated by topography microscopes through deep learning-based feature generation and graph segmentation. Hybrid vector shapes preserve the overall shape and boundary information of cells, so most cell shapes can be captured without any post-processing burden. NIH-3T3 and Hela-S3 cells have satisfactory results in cell description preservation. Compared to other deep learning methods, the proposed cell image segmentation method does not require postprocessing. It is also effective in preserving the overall morphology of cells and has shown better results in terms of cell boundary preservation.
Koide, Tetsushi;Morimoto, Takashi;Harada, Youmei;Mattausch, Jurgen Hans
대한전자공학회:학술대회논문집
/
대한전자공학회 2002년도 ITC-CSCC -1
/
pp.670-673
/
2002
This paper proposes a digital algorithm for gray-scale/color image segmentation of real-time video signals and a cell-network-based implementation architecture in state-of-the-art CMOS technology. Through extrapolation of design and simulation results we predict that about 300$\times$300 pixels can be integrated on a chip at 100nm CMOS technology, realizing very high-speed segmentation at about 1600sec per color image. Consequently real-time color-video segmentation will become possible in near future.
바이오 영상에서 세포 영역의 자동 분할 기술은 생물학자들이 복잡한 세포의 기능을 이해하는데 도움을 주고, 수작업을 통해 세포를 분석하던 일들을 자동적으로 처리해주는 매우 중요한 기술이다. 기존의 멀티채널 영상으로부터 세포핵 및 세포를 분할하는 방법은 DNA 채널을 이용하여 세포핵을 검출하고, 이를 초기 윤곽으로 하여 Actin 채널에서 밝기 기반의 Active Contour 모델을 통해 세포를 분할하는 2 단계의 과정을 거친다. 그러나 세포 분할 과정에서 채널 간 상관성으로 인해 발생하는 세포 내 불균일한 밝기 문제를 고려하지 않은 채, 밝기 기반의 Active Contour 모델을 적용하여 분할의 성능이 저하되는 문제점이 발생한다. 따라서 본 논문에서는 DNA 와 Actin 채널 간 상관성을 고려하여, DNA 채널 정보를 통해 Actin 채널 내부의 밝기를 균일하게 보정함으로써 밝기 기반의 Active Contour 모델이 세포 분할에 잘 적용 될 수 있는 전처리 알고리즘을 제안한다. 실험을 통해 제안 전처리 과정을 거친 세포 분할 방법의 성능이 기존 방법에 비해 객관적, 주관적으로 크게 향상됨을 증명한다.
This paper proposes the new method based on contour following method with directional angle to segment the cell into the nuclei. The object image was the Thyroid Gland cell image that was diagnosed as normal and abnormal(two types of abnormal : follicular neoplastic cell, and papillary neoplastic cell), respectively. The nuclei were successfully diagnosed as normal and abnormal. this paper, improved method of digital image analysis required in basic medical science for diagnosis of cells was proposed. The object image was the Thyroid Gland cell image with difference of chromatin patterns. To segment the cell nucleus from background, the region segmentation algorithm by edge tracing was proposed. And feature parameter was obtained from discrete Fourier transformation of image. After construct a feature sample group of each cells, experiment of discrimination was executed with any verification cells. As a result of experiment using features proposed in this paper, get a better segmentation rate(70-90%) than previously reported papers, and this method give shape to get objectivity and fixed quantity in diagnosis of cells. The methods described in this paper be used immediately for discrimination of neoplastic cells.
최근에 고속 genome-wide RNA 간섭 스크리닝 기술은 복잡한 세포 기능을 이해하는 생명공학 연구의 핵심적인 도구로 자리 잡고 있다. 그러나 관련 연구에서 발생되는 수많은 영상을 수작업을 통해 분석하는 것은 많은 시간과 노력이 요구된다. 따라서 세포영상의 자동분석 기술은 매우 시급히 확보되어야 하는 기술이며, 그 중 영상 분할은 자동분석을 위한 첫 단계로서 가장 중요한 과정이라 할 수 있다. 세포영상의 자동분할에서는 영역의 겹침 현상과 영역별 모양의 다양성 및 영상 특성의 불균일성 등이 정확한 세포 분할을 어렵게 만드는 주원인으로 작용한다. 본 논문에서는 이러한 문제점을 극복하기 위해 영상 특징들의 국부적인 연속성과 특징 벡터 기반의 워터쉐드 알고리즘을 적용한 새로운 자동 세포 분할 알고리즘을 제안한다. 영상 특징들의 연속성을 국부적인 영역으로 제한함으로써 영역별 모양의 다양성 및 영상 특성의 불균일성에 따른 문제점을 극복할 수 있으며, 특징벡터의 사용을 통해 하나의 영상특징만을 고려한 경우 발생되는 겹침 영역에서의 분할 성능 저하를 개선할 수 있다. 세포영상 분석을 위한 소프트웨어 패키지인 Cellprofiler와의 비교/분석 실험을 통해 제안 알고리즘의 효율성을 입증하였다.
본 논문에서는 적응적 관심영역(AAW: Adaptive Attention Window)에 기반한 세포영상 분할 기법을 제안한다. 적응적 관심영역은 분할하기 위해, 명암지도를 이용하여 초기 관심윈도우(IAW: Initial AW)를 생성한다. 생성된 초기 관심윈도우는 쿼드-트리 분할을 이용하여 실제의 관심영역(ROI: Region of Interest)과 유사한 크기가 될 때까지 축소된다. 이렇게 생성된 적응적 관심윈도우는 세포 영상에서 배경을 제거하고 관심영역 추출의 처리 시간을 줄이기 위해서 사용된다. 마지막으로 적응적 관심영역 안에서 영역을 분할하고, 관심영역만을 분리하기 위한 영역 병합과 제거를 수행한다. 실험에서 제안된 기법은 세포영상의 관심영역을 효과적으로 분리하여 인간 시각과 유사한 향상된 영상 분할 결과를 보여준다.
In recent years, using Deep Learning methods to apply for medical and biomedical image analysis has seen many advancements. In clinical, using Deep Learning-based approaches for cancer image analysis is one of the key applications for cancer detection and treatment. However, the scarcity and shortage of labeling images make the task of cancer detection and analysis difficult to reach high accuracy. In 2015, the Unet model was introduced and gained much attention from researchers in the field. The success of Unet model is the ability to produce high accuracy with very few input images. Since the development of Unet, there are many variants and modifications of Unet related architecture. This paper proposes a new approach of using Unet++ with pretrained EfficientNet as backbone architecture for breast tumor cell nuclei segmentation and uses the multi-organ transfer learning approach to segment nuclei of breast tumor cells. We attempt to experiment and evaluate the performance of the network on the MonuSeg training dataset and Triple Negative Breast Cancer (TNBC) testing dataset, both are Hematoxylin and Eosin (H & E)-stained images. The results have shown that EfficientUnet++ architecture and the multi-organ transfer learning approach had outperformed other techniques and produced notable accuracy for breast tumor cell nuclei segmentation.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.