• Title/Summary/Keyword: Cell range expansion bias

Search Result 6, Processing Time 0.021 seconds

An Adaptive Cell Selection Scheme for Ultra Dense Heterogeneous Mobile Communication Networks (초밀집 이종 이동 통신망을 위한 적응형 셀 선택 기법)

  • Jo, Jung-Yeon;Ban, Tae-Won;Jung, Bang Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.6
    • /
    • pp.1307-1312
    • /
    • 2015
  • As smart-phones become popular, mobile data traffic has been dramatically increasing and intensive researches on the next-generation mobile communication network is in progress to meet the increasing demand for mobile data traffic. In particular, heterogeneous network (HetNet) is attracting much interest because it can significantly enhance the network capacity by increasing the spatial reuse with macro and small cells. In the HetNet, we have several problems such as load imbalance and interference because of the difference in transmit power between macro and small cells and cell range expansion (CRE) can mitigate the problems. In this paper, we propose a new cell selection scheme with adaptive cell range expansion bias (CREB) for ultra dense HetNet and we analyze the performance of the proposed scheme in terms of average cell transmission rate through system-level simulations and compare it with those of other schemes.

A New Cell Selection Scheme with Adaptive Bias for Ultra Dense Heterogeneous Mobile Communication Networks (초밀집 이종 이동 통신망을 위한 적응형 편향치를 활용한 새로운 셀 선택 기법)

  • Jo, Jung-Yeon;Ban, Tae-Won;Jung, Bang Chul
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.63-66
    • /
    • 2015
  • As smart-phones become popular, mobile data traffic has been dramatically increasing and intensive researches on the next-generation mobile communication network is in progress to meet the increasing demand for mobile data traffic. In particular, heterogeneous network (HetNet) is attracting much interest because it can significantly enhance the network capacity by increasing the spatial resue with macro and small cells. In the HetNet, we have several problems such as load imbalance and interference because of the difference in transmit power between macro and small cells and cell range expansion (CRE) can mitigate the problems. In this paper, we propose a new cell selection scheme with adaptive cell range expansion bias (CREB) for ultra dense HetNet and we analyze the performance of the proposed scheme in terms of average cell transmission rate through system-level simulations and compare it with those of other schemes.

  • PDF

Performance Evaluation of Pico Cell Range Expansion and Frequency Partitioning in Heterogeneous Network (Heterogeneous 네트워크에서 Pico 셀 범위 확장과 주파수 분할의 성능 평가)

  • Qu, Hong Liang;Kim, Seung-Yeon;Ryu, Seung-Wan;Cho, Choong-Ho;Lee, Hyong-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.8B
    • /
    • pp.677-686
    • /
    • 2012
  • In the presence of a high power cellular network, picocells are added to a Macro-cell layout aiming to enhance total system throughput from cell-splitting. While because of the different transmission power between macrocell and picocell, and co-channel interference challenges between the existing macrocell and the new low power node-picocell, these problems result in no substantive improvement to total system effective throughput. Some works have investigated on these problems. Pico Cell Range Expansion (CRE) technique tries to employ some methods (such as adding a bias for Pico cell RSRP) to drive to offload some UEs to camp on picocells. In this work, we propose two solution schemes (including cell selection method, channel allocation and serving process) and combine new adaptive frequency partitioning reuse scheme to improve the total system throughput. In the simulation, we evaluate the performances of heterogeneous networks for downlink transmission in terms of channel utilization per cell (pico and macro), call blocking probability, outage probability and effective throughput. The simulation results show that the call blocking probability and outage probability are reduced remarkably and the throughput is increased effectively.

ABS Ratio Estimation Considering the Number of UEs in CRE Regions for LTE-A Heterogeneous Networks (LTE-A 기반 이종 네트워크에서 CRE 영역내 단말들의 수를 고려한 ABS 비율 산출 방법)

  • Sun, Jong-Suk;Roh, Byeong-hee
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.13 no.5
    • /
    • pp.104-112
    • /
    • 2017
  • The CRE (Cell Range Expansion) that selects the small cell with more efficient uplink resources has been developed by 3GPP to relieve the problem of the traffic imbalance due to the power differences between macro and small cells in HetNet. In addition, ABS (Almost Blank Subframes) has been proposed to resolve the signal interference problem due to the operation CREs. This paper proposes an effective method to calculate the ABS ratio by considering the proportion of the number of UEs in CRE and macro cell ranges, as well as the number of small cells in a macro cell. The proposed method has been implemented on the LTESim simulator, and compared with previously proposed methods. The experimental results show that the proposed method can improve the throughput and packet loss ratio performances. In particular, it is also shown that CRE bias values affect those performances, and there exist effective CRE bias values to derive the best performances.

Downlink Performance Analysis for Cell Range Expansion Bias in Heterogeneous Mobile Communication Networks (이종 이동통신 네트워크에서 셀 확장 편향치에 따른 하향 링크 성능 분석)

  • Ban, Tae-Won;Jung, Bang Chul;Jo, Jung-Yeon;Sung, Kil-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.12
    • /
    • pp.2806-2811
    • /
    • 2013
  • New technologies such as multi-antenna and small cell were proposed as key technology for the next generation mobile system to cope with the explosively increasing mobile data traffic. In particular, heterogeneous mobile communication network which can improve spatial reuse factor by exploiting macro and small cells simultaneously is attracting attention. However, the heterogeneous network has a problem that the utilization of small cells becomes low because the transmit power of macro base stations is much higher than that of small base stations and then the probability that mobile stations are attached to the macro base stations becomes high. This problem is dominant in uplink. The concept of cell range expansion bias to mitigate the problem was proposed by 3GPP and the corresponding standardization is in progress. In this paper, we analyze the downlink performance of the heterogeneous mobile communication network based on a system level simulator with the cell range expansion bias in terms of average cell spectral efficiency.

Small-cell Resource Partitioning Allocation for Machine-Type Communications in 5G HetNets (5G 이기종 네트워크 환경에서 머신타입통신을 위한 스몰셀 자원 분리 할당 방법)

  • Ilhak Ban;Se-Jin Kim
    • Journal of Internet Computing and Services
    • /
    • v.24 no.5
    • /
    • pp.1-7
    • /
    • 2023
  • This paper proposes a small cell resource partitioning allocation method to solve interference to machine type communication devices (MTCD) and improve performance in 5G heterogeneous networks (HetNet) where macro base station (MBS) and many small cell base stations (SBS) are overlaid. In the 5G HetNet, since various types of MTCDs generate data traffic, the load on the MBS increases. Therefore, in order to reduce the MBS load, a cell range expansion (CRE) method is applied in which a bias value is added to the received signal strength from the SBS and MTCDs satisfying the condition is connected to the SBS. More MTCDs connecting to the SBS through the CRE will reduce the load on the MBS, but performance of MTCDs will degrade due to interference, so a method to solve this problem is needed. The proposed small cell resource partitioning allocation method allocates resources with less interference from the MBS to mitigate interference of MTCDs newly added in the SBS with CRE, and improve the overall MTCD performace using separating resources according to the performance of existing MTCDs in the SBS. Through simulation results, the proposed small cell resource partitioning allocation method shows performance improvement of 21% and 126% in MTCDs capacity connected to MBS and SBS respectively, compared to the existing resource allocation methods.