• Title/Summary/Keyword: Cell performances

Search Result 437, Processing Time 0.024 seconds

Effect of Sintering Process with Co3O4 on the Performance of LSCF-Based Cathodes for Solid Oxide Fuel Cells

  • Khurana, Sanchit;Johnson, Sean;Karimaghaloo, Alireza;Lee, Min Hwan
    • International Journal of Precision Engineering and Manufacturing-Green Technology
    • /
    • v.5 no.5
    • /
    • pp.637-642
    • /
    • 2018
  • The impact of the sintering process, especially in terms of sintering temperature and sintering aid concentration, on the ohmic transport and electrode performance of $(La_{0.80}Sr_{0.20})_{0.95}CoO_{3-{\delta}}$-gadolinia-doped ceria (LSCF-GDC) cathodes is studied. The ohmic and charge-transfer kinetics exhibit a highly coupled $Co_3O_4$ concentration dependency, showing the best performances at an optimum range of 4-5 wt%. This is ascribed to small grain sizes and improved connection between particles. The addition of $Co_3O_4$ was also found to have a dominant impact on charge-transfer kinetics in the LSCF-GDC composite layer and a moderate impact on the electronic transport in the current-collecting LSCF layer. Care should be taken to avoid a formation of excessive thermal stresses between layers when adding $Co_3O_4$.

Design of Seawater Rechargeable Battery Package and BMS Module for Marine Equipment (해양기기 적용을 위한 해수이차전지 패키지 및 BMS 모듈 설계)

  • Kim, Hyeong-Jun;Lee, Kyung-Chang;Son, Ho-Jun;Park, Shin-Jun;Park, Cheol-Su
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.3
    • /
    • pp.49-55
    • /
    • 2022
  • The design of a battery package and a BMS module for applications using seawater rechargeable batteries, which are known as next-generation energy storage devices, is proposed herein. Seawater rechargeable batteries, which are currently in the initial stage of research, comprise primarily components such as anode and cathode materials. Their application is challenging owing to their low charge capacity and limited charge/discharge voltage and current. Therefore, we design a method for packaging multiple cells and a BMS module for the safe charging and discharging of seawater rechargeable batteries. In addition, a prototype seawater rechargeable battery package and BMS module are manufactured, and their performances are verified by evaluating the prevention of overcharge, overdischarge, overcurrent, and short circuit during charging and discharging.

Catalytic Membrane Reactor for Dehydrogenation of Water Via gas-Shift: A Review of the Activities for the Fusion Reactor Fuel Cycle

  • Tosti, Silvano;Rizzello, Claudio;Castelli, Stefano;Violante, Vittorio
    • Korean Membrane Journal
    • /
    • v.1 no.1
    • /
    • pp.1-7
    • /
    • 1999
  • Pd-ceramic composite membranes and catalytic membrane reactors(CMR) have been studied for hydrogen and its isotopes (deuterium and tritium) purification and recovery in the fusion reactor fuel cycle. Particularly a closed-loop process has been studied for recovering tritium from tritiated water by means of a CMR in which the water gas shift reaction takes place. The development of the techniques for coating micro-porous ceramic tubes with Pd and Pd/Ag thin layers is described : P composite membranes have been produced by electroless deposition (Pd/Ag film of 10-20 $\mu$m) and rolling of thin metal sheets (Pd and Pd/Ag membranes of 50-70 $\mu$m). Experimental results of the electroless membranes have shown a not complete hydrogen selectivity because of the presence of some defects(micro-holes) in the metallic thin layer. Conversely the rolled thin Pd and Pd/ag membranes have separated hydrogen from the other gases with a complete selectivity giving rise to a slightly larger (about a factor 1.7) mass transfer resistance with respect to the electroless membranes. Experimental tests have confirmed the good performances of the rolled membranes in terms of chemical stability over several weeks of operation. Therefore these rolled membranes and CMR are adequate for applications in the fusion reactor fuel cycle as well as in the industrial processes where high pure hydrogen is required (i.e. hydrocarbon reforming for fuel cell)

  • PDF

Enhancement of the energy efficiency of hydrogen SOFC system by integrated cold energy utilization and waste heat recovery method

  • Nguyen Quoc Huy;Duong Phan Anh;Ryu Bo Rim;Lee Jin Uk;Kang Ho Keun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.160-161
    • /
    • 2022
  • Hydrogen is bridge fuel with high energy content and environmentally friendly to satisfy the stringent IMO regulation relating to greenhouse gas (GHG) emissions. There is growing interest in hydrogen in numerous nations and regions illustrated by an extensive range of research and development in technology. Regarding maritime applications, researchers have recognized the utilization of hydrogen as a fuel for fuel cells, a device that converts the chemical energy of the fuel to electrical energy. Solid oxide fuel cell (SOFC), with high working temperature, is easy to combine with the waste heat recovery cycles/devices to increase output power and thermodynamic performances as well. Furthermore, the cold energy from liquid hydrogen supplied to SOFC can also be used to generate more power. In this study, we proposed a SOFC integrated system with the idea of combining the waste heat recovery from the SOFC exhaust stream and cold energy utilization from LH2. The designation is aimed to target small-scale vessel which uses electric propulsion for short distances voyage.

  • PDF

Preparation of CuS Counter Electrodes Using Electroplating for Quantum Dot-sensitized Solar Cells (전기 도금 공정을 활용한 양자점 감응 태양전지 CuS 상대 전극 제작)

  • SEUNG BEOM HA; IN-HEE CHOI;JAE-YUP KIM
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.6
    • /
    • pp.785-791
    • /
    • 2023
  • Copper sulfide (CuxS) has been extensively utilized as a counter electrode (CE) material for quantum dot solar cells (QDSCs) due to its exceptional catalytic activity for polysulfide electrolytes. The typical fabrication method of Cu2S CEs based on brass substrate is dangerous, involving the use of a highly concentrated hydrochloric acid solution in a relatively high temperature. In contrast, electroplating presents a safer alternative by employing a less acidic solution at a room temperature. In addition, the electroplating method increases the probability of obtaining CEs of consistent quality compared to the brass method. In this study, the optimized electroplating cycle for CuS CEs in QDSCs has been studied for the highly efficient photovoltaic performances. The QDSCs, featuring electroplated CuS CEs, achieved an impressive efficiency of 7.18%, surpassing the conventional method employing brass CEs, which yielded an efficiency of 6.62%.

Importance of Strain Improvement and Control of Fungal cells Morphology for Enhanced Production of Protein-bound Polysaccharides(β-D-glucan) in Suspended Cultures of Phellinus linteus Mycelia (Phellinus linteus의 균사체 액상배양에서 단백다당체(β-D-glucan)의 생산성 향상을 위한 균주 개량과 배양형태 조절의 중요성)

  • Shin, Woo-Shik;Kwon, Yong Jung;Jeong, Yong-Seob;Chun, Gie-Taek
    • Korean Chemical Engineering Research
    • /
    • v.47 no.2
    • /
    • pp.220-229
    • /
    • 2009
  • Strain improvement and morphology investigation in bioreactor cultures were undertaken in suspended cultures of Phellinus linteus mycelia for mass production of protein-bound polysaccharides(soluble ${\beta}$-D-glucan), a powerful immuno-stimulating agent. Phellineus sp. screened for this research was identified as Phellinus linteues through ITS rDNA sequencing method and blast search, demonstrating 99.7% similarity to other Phellinus linteus strains. Intensive strain improvement program was carried out by obtaining large amounts of protoplasts for the isolation of single cell colonies. Rapid and large screening of high-yielding producers was possible because large numbers of protoplasts ($1{\times}10^5{\sim}10^6\;protoplasts/ml$) formed using the banding filtration method with the cell wall-disrupting enzymes could be regenerated in relatively high regeneration frequency($10^{-2}{\sim}10^{-3}$) in the newly developed regeneration medium. It was demonstrated that the strains showing high performances in the protoplast regeneration and solid growth medium were able to produce 5.8~6.4%(w/w) of ${\beta}$-D-glucan and 13~15 g/L of biomass in stable manners in suspended shake-flask cultures of P. linteus mycelia. In addition, cell mass increase was observed to be the most important in order to enhance ${\beta}$-D-glucan productivity during the course of strain improvement program, since the amount of ${\beta}$-D-glucan extracted from the cell wall of P. linteus mycelia was almost constant on the unit biomass basis. Therefore we fully investigated the fungal cell morphology, generally known as one of the key factors affecting cell growth extent in the bioreactor cultures of mycelial fungal cells. It was found that, in order to obtain as high cell mass as possible in the final production bioreactor cultures, the producing cells should be proliferated in condensed filamentous forms in the growth cultures, and optimum amounts of these filamentous cells should be transferred as active inoculums to the production bioreactor. In this case, ideal morphologies consisting of compacted pellets less than 0.5mm in diameter were successfully induced in the production cultures, resulting in shorter period of lag phase, 1.5 fold higher specific cell growth rate and 3.3 fold increase in the final biomass production as compared to the parallel bioreactor cultures of different morphological forms. It was concluded that not only the high-yielding but also the good morphological characteristics led to the significantly higher biomass production and ${\beta}$-D-glucan productivity in the final production cultures.

Electrochemical Properties of HNO3 Pre-treated $TiO_2$ Photoelectrode for Dye-SEnsitized Solar Cells (염료감응형 태양전지용 질산 전처리된 $TiO_2$ 광전극의 전기화학적 특성)

  • Park, Kyung-Hee;Jin, En-Mei;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.441-441
    • /
    • 2009
  • Dye-sensitized solar cells (DSSCs) have been widely investigated as a next-generation solar cell because of their simple fabrication process and low coats. The cells use a porous nanocrystalline TiO2 matrix coated with a sensitizer dye that acts as the light-harvesting element. The photo-exited dye injects electrons into the $TiO_2$ particles, and the oxide dye reacts with I- in the electrolyte in regenerative cycle that is completed by the reduction of $I_3^-$ at a platinum-coated counter electrode. Since $TiO_2$ porous film plays a key role in the enhancement of photoelectric conversion efficiency of DSSC, many scientists focus their researches on it. Especially, a high light-to-electricity conversion efficiency results from particle size and crystallographic phase, film porosity, surface structure, charge and surface area to volume ratio of porous $TiO_2$ electrodes, on which the dye can be sufficiently adsorbed. Effective treatment of the photoanode is important to improve DSSC performance. In this paper, to obtain properties of surface and dispersion as nitric acid treated $TiO_2$ photoelectrode was investigate. The photovoltaic characteristics of DSSCs based the electrode fabricated by nitric acid pre-treatment $TiO_2$ materials gave better performances on both of short circuit current density and open circuit voltage. We compare dispersion of $TiO_2$ nanoparticles before and after nitric acid treatment and measured Ti oxidized state from XPS. Low charge transfer resistance was obtained in nitric acid treated sample than that of untreated sample. The dye-sensitized solar cell based on the nitric acid treatment had open-circuit voltage of 0.71 V, a short-circuit current of 15.2 mAcm-2 and an energy conversion efficiency of 6.6 % under light intensity of $100\;mWcm^{-2}$. About 14 % increases in efficiency obtained when the $TiO_2$ electrode was treated by nitric acid.

  • PDF

Continuous Alcohol Fermentation by Cell Recycling Using Hollow Fiber Recycle Reactor (Hollow Fiber Recycle Reactor를 이용한 알콜연속 발효)

  • 이시경;박경호;백운화;장호남
    • Microbiology and Biotechnology Letters
    • /
    • v.14 no.2
    • /
    • pp.193-198
    • /
    • 1986
  • Improvement of productivity in ethanol fermentation was attempted using a hollow fiber bioreactor (HFR) where Saccharomyces cerevisiac var. ellipsoideus cells were recycled to achieve a high yeast concentration. Industrial wort was used as the fermentation media without supplying any additional nutrients. The performances in hollow fiber recycle reactor (HFR) were compared with those of batch and continuous cultures. In a continuous culture with 11$^{\circ}$P and 15$^{\circ}$P wort media final ethanol concentrations were 4.71% and 5.82% (v/v) and yields 86.2% and 78.6% respectively when the dilution rate (D) was 0.1 h$^{-1}$, in contrast, the ethanol concentration and productivity in HFR were 7.64%(v/v) and 6.1g/l/h at D=0.1h$^{-1}$ with 15$^{\circ}$P media. When the dilution rate was increased to 0.2 h$^{-1}$, the concentration and the Productivity were 7.62% (v/v) and 12.2g/l/h. At D=0.3h$^{-1}$ the sugar was completely consumed and the productivity was 18.1g/l/h. This correponds to 4 times that in continuous system and 16.3 times that in the batch system performed in comparable conditions.

  • PDF

An Experimental Analysis of Hydrate Production using Multi-Well, Plate-Type Cell Apparatus (다중공 평판형 셀기기에서 하이드레이트 생산실험 분석연구)

  • Bae, Jaeyu;Sung, Wonmo;Kwon, Sunil
    • Korean Chemical Engineering Research
    • /
    • v.45 no.3
    • /
    • pp.304-309
    • /
    • 2007
  • In this study, the "Multi Well Plate-type cell Apparatus" was designed and setup for performing the producing experiments of methane hydrate by depressurization, heat stimulating methods. In order to characterizing the producing mechanism of hydrate through porous materials, the experiments for various producing methods have been conducted with the aid of the apparatus which has high permeability. In the experimental result of depressurization method, the pressure is temporarily increased unlikely conventional gas reservoir due to the sourcing effect of hydrate dissociation in the pore. Meanwhile, the temperature is decreased because of the endothermic reaction while hydrate is dissociated. In the experimental results of heat stimulating method, the dissociation in depressurization method is more slowly processed than that in thermal method, and hence, its gas production is lower. In the case of production right after heating, hydrate is dissociated only near injecting point and the permeability becomes greater at that area only. It infers that the more gas is produced during relatively earlier producing period. Since then, the hydrate is more slowly dissociated than the case of production after heating and soaking. This time, the performances of pressure and production obtained by thermal method have been analyzed in order to investigate the effect of soaking time on gas recovery. As a result, the gas recoveries in the case of 2 min and 4 min soaking are higher than case in 6 min soaking. This is reason that hydrate is reformed due to the decrease of temperature. It is expected that the experimental results obtained in this work may be more clearly explained by utilizing the lower permeable porous system with the greater hydrate saturation.

Research Trends on Improvement of Physicochemical Properties of Sulfonated Hydrocarbon Polymer-based Polymer Electrolyte Membranes for Polymer Electrolyte Membrane Fuel Cell Applications (고분자 전해질 막 연료전지 응용을 위한 탄화수소계 고분자 전해질 막의 물성 향상에 관한 연구동향)

  • Inhyeok, Hwang;Davin, Choi;Kihyun, Kim
    • Membrane Journal
    • /
    • v.32 no.6
    • /
    • pp.427-441
    • /
    • 2022
  • Polymer electrolyte membrane (PEM) serving as a separator that can prevent the permeation of unreacted fuels as well as an electrolyte that selectively transports protons from the anode to the cathode has been considered a key component of polymer electrolyte membrane fuel cell (PEMFC). The perfluorinated sulfonic acid-based PEMs, represented by Nafion®, have been commercialized in PEMFC systems due to their high proton conductivity and chemical stability. Nevertheless, these PEMs have several inherent drawbacks including high manufacturing costs by the complex synthetic processes and environmental problems caused by producing the toxic gases. Although numerous studies are underway to address these drawbacks including the development of sulfonated hydrocarbon polymer-based PEMs (SHP-PEMs), which can easily control the polymer structures, further improvement of PEM performances and durability is necessary for practical PEMFC applications. Therefore, this study focused on the various strategies for the development of SHP-PEMs with outstanding performance and durability by 1) introducing cross-linked structures, 2) incorporating organic/inorganic composites, and 3) fabricating reinforced-composite membranes using porous substrates.