• Title/Summary/Keyword: Cell object

Search Result 275, Processing Time 0.028 seconds

Protective Effect of Aurantii Immaturus Fructus on Hypoxia Reperfusion Induced by PC12 Cell Damage and Global Ischemia in Gerbil (PC12 손상 세포 및 전뇌허혈 유발 Gerbil에 대한 지실의 세포보호효과 연구)

  • 김완식;정승현;신길조;문일수;이원철
    • The Journal of Korean Medicine
    • /
    • v.24 no.1
    • /
    • pp.29-40
    • /
    • 2003
  • Object : This research was performed to investigate the protective effect of Aurantii Immaturus Fructus against ischemic damage using PC12 cells and global ischemia in gerbils. Methods : To observe the protective effect of Aurantii Immaturus Fructus on ischemia damage, viability and changes in activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase and production of malondialdehyde (MDA) were observed after treating PC12 cells with Aurantii Immaturus Fructus during ischemic insult. Gerbils were divided into three groups : a normal group, a 5-min two-vessel occlusion (2VO) group, and an Aurantii Immaturus Fructus administered after 2VO group. The CCAs were occluded by microclip for 5 minutes. Aurantii Immaturus Fructus was administered orally for 7 days after 2VO. The histological analysis was performed at 7 days after the surgery. For histological analysis, the brain tissue was stained with 1% cresyl violet solution. Results : The results showed that 1. Aurantii Immaturus Fructus had a protective effect against ischemia in the CAI area of the gerbil hippocampus 7 days after 5-minute occlusion, 2. In the hypoxia/reperfusion model using PC12 cells, the Aurantii Immaturus Fructus had a protective effect against ischemia in the dose of $0.2{\;}\mu\textrm{g}/ml,{\;}2{\;}\mu\textrm{g}/ml{\;}and{\;}20{\;}\mu\textrm{g}/ml$ 3. Aurantii Immaturus Fructus increased the activities of glutathione peroxidase and catalase, 4. The activity of superoxide dismutase (SOD) was increased by ischemic damage, which might represent self protection. This study suggests that Aurantii Immaturus Fructus has some neuroprotective effect against neuronal damage following cerebral ischemia in vivo with a widely used experimental model of cerebral ischemia in Mongolian gerbils, and it also has protective effects on a hypoxia/reperfusion cell culture model using PCq2 cells. Conclusions : Aurantii Immaturus Fructus has protective effects against ischemic brain damage at the early stage of ischemia.

  • PDF

The Effect of the Water Extract of Angelica Sinens on Gliosis Repression of Astrocyte after Hypoxic injury (당귀가 저산소로 손상된 성상세포의 gliosis 억제에 미치는 영향)

  • Lee, Seung-Hee;Moon, Seong-Jin;Shin, Jin-Bong;Hae, Rae-Kyong;Seong, Kee-Moon;Yang, Jae-Hoon;Song, Bong-Keun
    • The Journal of Korean Medicine
    • /
    • v.29 no.1
    • /
    • pp.167-178
    • /
    • 2008
  • Object : Gliosis becomes a physical and mechanical barrier to axonal regeneration. Reactive gliosis induced by hypoxic brain injury is involved with up-regulation of CD81 and GFAP. The current study was to examine the effect of the Angelica Sinens on CD81 and GFAP regulation after hypoxic brain injury in the astrocyte. Methods : MTT assay was performed to examine cell viability, and cell based ELISA, western blot and PCR were used to detect the expression of CD81 and GFAP. Results : The following results were obtained: 1. Using ELISA, western blot and PCR from the astrocyte after hypoxic injury, CD81 and GFAP expression was seen to have increased. 2. After the administration of Angelica Sinens extract to astrocyte following hypoxic injury, CD81 and GFAP expression was down regulated significantly. The water extract of Angelica Sinens prevented cell destruction by hypoxic induced with $CoCl_2$. Conclusion : These results indicate that Angelica Sinens could suppress reactive gliosis, which disturbs astrocyte regeneration after hypoxic brain injury by controlling the expression of CD81 and GFAP.

  • PDF

Wettability and cellular response of UV light irradiated anodized titanium surface

  • Park, Kyou-Hwa;Koak, Jai-Young;Kim, Seong-Kyun;Heo, Seong-Joo
    • The Journal of Advanced Prosthodontics
    • /
    • v.3 no.2
    • /
    • pp.63-68
    • /
    • 2011
  • PURPOSE. The object of this study was to investigate the effect of UV irradiation (by a general commercial UV sterilizer) on anodized titanium surface. Surface characteristics and cellular responses were compared between anodized titanium discs and UV irradiated anodized titanium discs. MATERIALS AND METHODS. Titanium discs were anodized and divided into the following groups: Group 1, anodized (control), and Goup 2, anodized and UV irradiated for 24 hours. The surface characteristics including contact angle, roughness, phase of oxide layer, and chemical elemental composition were inspected. The osteoblast-like human osteogenic sarcoma (HOS) cells were cultured on control and test group discs. Initial cellular attachment, MTS-based cell proliferation assay, and ALP synthesis level were compared between the two groups for the evaluation of cellular response. RESULTS. After UV irradiation, the contact angle decreased significantly (P<.001). The surface roughness and phase of oxide layer did not show definite changes, but carbon showed a considerable decrease after UV irradiation. Initial cell attachment was increased in test group (P=.004). Cells cultured on test group samples proliferated more actively (P=.009 at day 2, 5, and 7) and the ALP synthesis also increased in cells cultured on the test group (P=.016 at day 3, P=.009 at day 7 and 14). CONCLUSION. UV irradiation induced enhanced wettability, and increased initial cellular responses of HOS cells on anodized titanium surface.

Image Analysis for Discrimination of Neoplastic Cellis in Spatial Frequency Domain (종양세포식별을 위한 공간주파수영역에서의 화상해석)

  • 나철훈;김창원;김현재
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.3
    • /
    • pp.385-396
    • /
    • 1993
  • In this paper, a improved method of digital image analysis required in basic medical science for diagnosis of cells was proposed. The object image was the thyroid gland cell image, and the purpose was automatic discrimination of three classes cells(normal cell, follicular neoplastic cells, and papillary neoplastic cells) by difference of chromatin patterns. To segment the cell nucleus from background, the region segmentation algorithm by edge tracing was proposed. And feature parameter was obtained from discrete Fourier transformation of image. After construct a feature sample group of each cells, experiment of discrimination was executed with any verification cells. As a consequency of using features proposed in this paper, get a better recognition rate(70-90%) than previously reported papers, and this method give shape to get objectivity and fixed quantity in diagnosis of cells, The methods described in this paper be used immediately for discrimination of neoplastic cells.

  • PDF

Effect of Chungganhaeju-hwan in Ethanol-induced Neuronal Cell Damage (청간해주환(淸肝解酒丸)의 알코올 유도 뇌신경세포 손상에 대한 보호 효과)

  • Ju, Mi-Sun;Kim, Hyo-Geun;Cho, Hae-Jeong;Sim, Jae-Jong;Jeon, Yong-Jun;Oh, Myung-Sook
    • The Korea Journal of Herbology
    • /
    • v.26 no.3
    • /
    • pp.75-82
    • /
    • 2011
  • Objectives : In this study, we evaluated the effect of Chungganhaeju-hwan(CGHJH) on hydrogen peroxide($H_2O_2$)-induced and ethanol(EtOH)-induced neuronal damage in vitro and in vivo, respectively. Methods:We carried out the anti-oxidant effects of CGHJH against hydrogen peroxide($H_2O_2$)-induced toxicity in HT22 and PC12 cells using thiazolyl blue tetrazolium bromide. Then, to investigate the protective effect on CGHJH against EtOH-induced memory impairment and hippocampal cell damage in male ICR mice, we performed novel object recognition test(NORT), and analysed the brain tissues after immunohistochemistry and western blotting. Results:CGHJH showed protective effect from $H_2O_2$-induced cell toxicity at doses of $1\sim100{\mu}g$/mL in both HT22 and PC12 cells. CGHJH had also recovery effect from EtOH-induced memory impairment in ICR mice from NORT and it protected hippocampal cells against EtOH toxicity in the result of cresyl violet and NeuN immunoreactivity. Conclusion : These results demonstrate that CGHJH has protective effect in neuronal cells against $H_2O_2$ and EtOH toxicities and this effect could be a main role of recovery effect on EtOH-induced memory loss.

Effects of the Mechanical Stretch on Aligned Multi-Layered Nanofibrous Scaffolds Seeded with Smooth Muscle Cells (기계적 자극이 다층 구조의 나노파이버 지지체의 평활근 세포에 미치는 영향)

  • Shin, Ji-Won;Kim, Dong-Hwa;Heo, Su-Jin;Kim, Su-Hyang;Kim, Young-Jick;Shin, Jung-Woog
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.1
    • /
    • pp.52-58
    • /
    • 2008
  • The object of this study is to investigate the effects of intermittent cyclic stretching on the smooth muscle cells (SMCs) seeded onto aligned multi-layered fibrous scaffold. To make multi-layered fibrous scaffold, polyurethane (PU) and poly(ethylene oxide) (PEO) were electrospun alternatively, then were immersed into distilled water to extract PEO. Various types of scaffolds were fabricated depending on fiber directions, i.e., aligned or randomly oriented. The direction of stretching was either parallel or vertical to the fiber direction for the aligned scaffolds. The stretching was also applied to the randomly aligned scaffolds. The duration of stretching was 2 min with 15 min resting period. During the stretching, the maximum and minimum strain was adjusted to be 10 and 7%, respectively with the frequency of 1 Hz. The bioactivities of cells on the scaffolds were assessed by quantifying DNA, collagen, and glycosaminoglycan (GAG) levels. And the cell morphology was observed by staining F-actin. SMCs under parallel stretching to the fiber direction responded more positively than those in other conditions. From the results, we could explain the morphological effect of a substrate on cellular activities. In addition the synergistic effects of substrate and mechanical stimuli effects were confirmed.

Use of adipose-derived stem cells in lymphatic tissue engineering and regeneration

  • Forte, Antonio Jorge;Boczar, Daniel;Sarabia-Estrada, Rachel;Huayllani, Maria T.;Avila, Francisco R.;Torres, Ricardo A.;Guliyeva, Gunel;Aung, Thiha;Quinones-Hinojosa, Alfredo
    • Archives of Plastic Surgery
    • /
    • v.48 no.5
    • /
    • pp.559-567
    • /
    • 2021
  • The potential to differentiate into different cell lines, added to the easy and cost-effective method of extraction, makes adipose-derived stem cells (ADSCs) an object of interest in lymphedema treatment. Our study's goal was to conduct a comprehensive systematic review of the use of ADSCs in lymphatic tissue engineering and regeneration. On July 23, 2019, using PubMed/MEDLINE, Cochrane Clinical Answers, Cochrane Central Register of Controlled Trials, and Embase databases, we conducted a systematic review of published literature on the use of ADSCs in lymphatic tissue engineering and regeneration. There were no language or time frame limitations, and the following search strategy was applied: ((Adipose stem cell) OR Adipose-derived stem cell)) AND ((Lymphedema) OR Breast Cancer Lymphedema). Only original research manuscripts were included. Fourteen studies fulfilled the inclusion criteria. Eleven studies were experimental (in vitro or in vivo in animals), and only three were clinical. Publications on the topic demonstrated that ADSCs promote lymphangiogenesis, and its effect could be enhanced by modulation of vascular endothelial growth factor-C, interleukin-7, prospero homeobox protein 1, and transforming growth factor-β1. Pilot clinical studies included 11 patients with breast cancer-related lymphedema, and no significant side effects were present at 12-month follow-up. Literature on the use of ADSCs in lymphatic tissue engineering and regeneration demonstrated promising data. Clinical evidence is still in its infancy, but the scientific community agrees that ADSCs can be useful in regenerative lymphangiogenesis. Data collected in this review indicate that unprecedented advances in lymphedema treatment can be anticipated in the upcoming years.

Numerical Simulation based on SPH of Bullet Impact for Fuel Cell Group of Rotorcraft (입자법 기반 항공기용 연료셀 그룹 피탄 수치모사)

  • Kim, Hyun Gi;Kim, Sung Chan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.2
    • /
    • pp.71-78
    • /
    • 2014
  • There is a big risk of bullet impact because military rotorcraft is run in the battle environment. Due to the bullet impact, the rapid increase of the internal pressure can cause the internal explosion or fire of fuel cell. It can be a deadly damage on the survivability of crews. Then, fuel cell of military rotorcraft should be designed taking into account the extreme situation. As the design factor of fuel cell, the internal fluid pressure, structural stress and bullet kinetic energy can be considered. The verification test by real object is the best way to obtain these design data. But, it is a big burden due to huge cost and long-term preparation efforts and the failure of verification test can result in serious delay of a entire development plan. Thus, at the early design stage, the various numerical simulations test is needed to reduce the risk of trial-and-error together with prediction of the design data. In the present study, the bullet impact numerical simulation based on SPH(smoothed particle hydrodynamic) is conducted with the commercial package, LS-DYNA. Then, the resulting equivalent stress, internal pressure and bullet's kinetic energy are evaluated in detail to examine the possibility to obtain the configuration design data of the fuel cell.

Design of Ultra-precision Micro Stage using Response Surface Methodology (반응표면분석법을 이용한 초정밀 마이크로스테이지의 설계)

  • Ye, Sang-Don;Min, Byeong-Hyeon;Lee, Jae-Kwang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.1
    • /
    • pp.39-44
    • /
    • 2006
  • Ultra precision positioning mechanism has been widely used on semiconductor manufacturing equipments, optical spectrum analyzers and cell manipulations. Ultra precision positioning mechanism consists of several actuators, sensors, guides and control systems. Its efficiency depends on each performance of components. The object of this study is to design and analyze the micro stage that is one of the equipments embodied in ultra precision positioning mechanism. The micro stage consists of PZT actuators and flexure hinges. The structural design of flexure hinge is optimized by using RSM and FEM. The control factors concerned with the design of flexure hinges of stage and arms are optimized by minimizing the equivalent stress on the hinge and maximizing 1st natural frequency based on RSM and FEM simulation under various kinds of design conditions.

  • PDF

Adjecent Object Segmentation Method Using Geometric Information in Cell Images (세포영상에서의 기하정보를 이용한 인접객체 분할 방법)

  • Eun, Sung-Jong;WhangBo, Taeg-Keun
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06b
    • /
    • pp.296-299
    • /
    • 2011
  • 임상 진단에서 환자의 의료 영상을 시각적으로 보고 해석하거나 또는 수작업으로 영상을 해석하여 진단에 이용한다. 이러한 수작업의 불편함을 해소하기 위하여 의료 영상처리 알고리즘들이 많이 연구되어오고 있다. 그 중 영상처리의 정확도 부분이 많은 문제가 되고 있는데, 특히 세포영상에서는 인접한 영역의 분할이 가장 중요시되고 있다. 본 논문은 이러한 인접영역의 분할을 위해 객체의 기하 정보인 곡률(Curvature) 정보와 컨벡스 헐(Convex Hull)을 통한 분할 방법을 제안하고자 한다. 실험 결과 87.5%의 정확도가 검출되었으며 향후 인접 객체의 내부정보까지 고려한 효과적인 분할 방법을 연구하고자 한다.