• Title/Summary/Keyword: Cell monolayer system

Search Result 42, Processing Time 0.022 seconds

Effect of Culture Media and Co-culture with Bovine and Rabbit Oviductal Epithelial Cells on In Vitro Development of Rabbit Embryos (토끼 수정란의 체외발달에 미치는 배양액 및 소와 토끼의 난관상피세포들과의 공배양 효과)

  • 노규진;이효종;송상현;윤희준;박충생
    • Korean Journal of Animal Reproduction
    • /
    • v.18 no.1
    • /
    • pp.39-46
    • /
    • 1994
  • This experiment was carried out to develop an in vitro culture system for rabbit embryos. The zygotes or 2-cell embryos were collected from the oviducts of the superovulated and mated does with D-PBS/10% FCS at 24 hours after hCG injection. The in vitro developmental rate of blastocyst formation and the number of nuclei in the embryos were examined under the following treatments; 1) TCM-199 with 10% FCS, 2) EBSS with 10% FCS, 3) rabbit vitreous humor(VH), 4) TCM-199 with 10% FCS+BOEC, 5) TCM-199 with 10% FCS+ROEC, 6) EBSS with 10% FCS+BOEC and 7) EBSS with 10% FCS+ROEC. For a comparative study of in vivo and in vitro development, the fresh blastocysts, which were developed in vivo for 96 hours after hCG injection, were collected from the uterus and their numbers of nuclei were counted. 1. The zygotes or 2-cell embryos developed to the blastocyst stage in TCM-199, EBSS and VH at the rates of 93, 92 and 89%, respectively. 2. The higher developmental rates 95~98% of blastocyst formation was achieved when the embryos were co-cultured with a monolayer of bovine or rabbit oviductal epithelial cells in TCM-199 or EBSS. No significant difference in developmental rates was shown between bovine and rabbit oviductal epithelial cells. 3. In a comparative study of in vivo and in vitro development, the total numbers of nuclei were significantly less in the in vitro cultured embryos(104~224) than the in vivo developed embryos(1, 0090 at 96 hours after hCG injectin. 4. The mean cell cycle numbers in the embryos cultured for 72 hours in TCM-199 with 10% FCS, EBSS with 10% FCS, TCM-199 with 10% FCS+BOEC, TCM-199 with 10% FCS+ROEC, EBSS with 10% FCS+BOEC and in vivo was 7.38, 6.63, 7.76, 7.69, 7.01 and 9.92, respectively. From these results, it can be suggested the optimal culture system for in vitro culture of rabbit embryos is a co-culture system with bovine or rabbit oviductal epithelial cells in TCM-199 with 10% FCS. Considering the significant reduction in total numbers of nuclei in the in vitro cultured embryos, the advanced research on development of in vitro culture system for rabbit embryos is expected.

  • PDF

Osteogenic Potential of the Periosteum and Periosteal Augmentation for Bone-tunnel Healing

  • Youn Inchan;Suh J-K Francis;Choi Kuiwon
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.2
    • /
    • pp.101-110
    • /
    • 2005
  • Periosteum and periosteum-derived progenitor cells have demonstrated the potential for stimulative applications in repairs of various musculoskeletal tissues. It has been found that the periosteum contains mesenchymal progenitor cells capable of differentiating into either osteoblasts or chondrocytes depending on the culture conditions. Anatomically, the periosteum is a heterogeneous multi-layered membrane, consisting of an inner cambium and an outer fibrous layer. The present study was designed to elucidate the cellular phenotypic characteristics of cambium and fibrous layer cells in vitro, and to assess whether structural integrity of the tendon in the bone tunnel can be improved by periosteal augmentation of the tendon­bone interface. It was found the cells from each layer showed distinct phenotypic characteristics in a primary monolayer culture system. Specifically, the cambium cells demonstrated higher osteogenic characteristics (higher alkaline phosphatase and osteocalcin levels), as compared to the fibrous cells. Also in vivo animal model showed that a periosteal augmentation of a tendon graft could enhance the structural integrity of the tendon-bone interface, when the periosteum is placed between the tendon and bone interface with the cambium layer facing toward the bone. These findings suggest that extra care needs to be taken in order to identify and maintain the intrinsic phenotypes of the heterogeneous cell types within the periosteum. This will improve our understanding of periosteum in applications for musculoskeletal tissue repairs and tissue engineering.

Development of piezoelectric immunosensor for the rapid detection of marine derived pathogenic bacteria, Vibrio vulnificus

  • Hong, Suhee;Jeong, Hyun-Do
    • Journal of fish pathology
    • /
    • v.27 no.2
    • /
    • pp.99-105
    • /
    • 2014
  • Biosensors consist of biochemical recognition agents like antibodies immobilized on the surfaces of transducers that change the recognition into a measurable electronic signal. Here we report a piezoelectric immunosensor made to detect Vibrio vulnificus. A 9MHz AT-cut piezoelectric wafer attached with two gold electrodes of 5mm diameter was used as the transducer of the QCM biosensor with a reproducibility of ${\pm}0.1Hz$ in frequency response. We have tried different approaches to immobilize antibody on the sensor chip. Concerning the orientation of antibody for the best antigen binding capacity, the antibody was immobilized by specific binding to protein G or by cross-linking through hydrazine. In addition, protein G was cross-linked on glutaraldehyde activated immine layer (PEI) or EDC/NHS activated sulfide monolayer (MPA). PEI was found to be more effective to immobilize protein G following glutaraldehyde activation than MPA. However, hydrazine chip showed a better capability to immobilize more IgG than protein G chip and a higher sensitivity. The sensor system was able to detect V. vulnificus in dose dependent manner and was able to detect bacterial cells within 5 minutes by monitoring frequency shifts in real time. The detection limit can be improved by preincubation to enrich the bacterial cell number.

Effects of Cell Status of Bovine Oviduct Epithelial Cell (BOEC) on the Development of Bovine IVM/IVF Embryos and Gene Expression in the BOEC Used or Not Used for the Embryo Culture

  • Jang, H.Y.;Jung, Y.S.;Cheong, H.T.;Kim, J.T.;Park, C.K.;Kong, H.S.;Lee, H.K.;Yang, B.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.7
    • /
    • pp.980-987
    • /
    • 2008
  • The objective of this study was to investigate the effects of cell status of BOEC on development of bovine IVM/IVF embryos and gene expression in BOEC before or after culturing of embryos. The developmental rates beyond morula stage in the BOEC co-culture group was significantly higher than in the control group (p<0.05). In particular, blastocyst production in the BOEC co-culture group (28.3%) was dramatically increased compared with the control group (7.2%). In the in vitro development of bovine IVM/IVF embryos according to cell status, the developmental rates beyond morula stage in the primary culture cell (PCC) co-culture group were the highest of all experimental groups. Expression of genes related to growth (TGF-${\beta}$ EGF and IGFBP), apoptosis (Bax, Caspase-3 and p53) and antioxidation (CuZnSOD, MnSOD, Catalase and GPx) in different status cells of BOEC for embryo culture was detected by RT-PCR. While EGF gene was detected in isolated fresh cells (IFC) and PCC, TGF-${\beta}$ and IGFBP were found in IFC or PCC after use in the embryo culture, respectively. Caspase-3 and Bax genes were detected in all experimental groups regardless of whether the BOEC was used or not used in the embryo culture. However, p53 gene was found in IFC of both conditions for embryo culture and in frozen/thawed culture cells (FPCC) after use in the embryo culture. Although antioxidant genes examined were detected in all experimental groups before using for the embryo culture, these genes were not detected after use. This study indicated that the BOEC co-culture system used for in vitro culture of bovine IVF embryos can increase the developmental rates, and cell generations and status of BOEC might affect the in vitro development of bovine embryos. The BOEC monolayer used in the embryo culture did not express the growth factors (TGF-${\beta}$ and EGF) and enzymatic antioxidant genes, thereby improving embryo development in vitro.

Lupus Heart Disease Modeling with Combination of Induced Pluripotent Stem Cell-Derived Cardiomyocytes and Lupus Patient Serum

  • Narae Park;Yeri Alice Rim;Hyerin Jung;Yoojun Nam;Ji Hyeon Ju
    • International Journal of Stem Cells
    • /
    • v.15 no.3
    • /
    • pp.233-246
    • /
    • 2022
  • Background and Objectives: Systemic lupus erythematosus (SLE) is a chronic autoimmune disease mainly affecting young women of childbearing age. SLE affects the skin, joints, muscles, kidneys, lungs, and heart. Cardiovascular complications are common causes of death in patients with SLE. However, the complexity of the cardiovascular system and the rarity of SLE make it difficult to investigate these morbidities. Patient-derived induced pluripotent stem cells (iPSCs) serve as a novel tool for drug screening and pathophysiological studies in the absence of patient samples. Methods and Results: We differentiated CMs from HC- and SLE-iPSCs using 2D culture platforms. SLE-CMs showed decreased proliferation and increased levels of fibrosis and hypertrophy marker expression; however, HC-and SLE-monolayer CMs reacted differently to SLE serum treatment. HC-iPSCs were also differentiated into CMs using 3D spheroid culture and anti-Ro autoantibody was treated along with SLE serum. 3D-HC-CMs generated more mature CMs compared to the CMs generated using 2D culture. The treatment of anti-Ro autoantibody rapidly increased the gene expression of fibrosis, hypertrophy, and apoptosis markers, and altered the calcium signaling in the CMs. Conclusions: iPSC derived cardiomyocytes with patient-derived serum, and anti-Ro antibody treatment could serve in effective autoimmune disease modeling including SLE. We believe that the present study might briefly provide possibilities on the application of a combination of patient-derived materials and iPSCs in disease modeling of autoimmune diseases.

In vitro maturation of ovine oocyte in a modified granulosa cells co-culture system and alpha-tocopherol supplementation: effects on nuclear maturation and cleavage

  • Adeldust, Hamideh;Zeinoaldini, Saeed;Kohram, Hamid;Roudbar, Mahmoud Amiri;Joupari, Morteza Daliri
    • Journal of Animal Science and Technology
    • /
    • v.57 no.8
    • /
    • pp.27.1-27.6
    • /
    • 2015
  • This study was designed to investigate the effects of ${\alpha}$-tocopherol and granulosa cells monolayer on nuclear maturation and cleavage rates of ovine cumulus-oocyte complexes (COCs). The COCs (n = 2814) were matured in maturation medium supplemented with various concentration of ${\alpha}$-tocopherol (0, 5, 10, $15{\mu}g/ml$), oocytes were incubated at $39^{\circ}C$ with 5 % $CO_2$ for 24 h in three culture systems: (a) maturation medium (MM; n = 884), (b) co-cultured with granulosa cells (CG; n = 982) and (c) co-cultured with granulosa cells and cells were further cultured in MM for 12 h (CG + 12hMM; n = 948). Our results showed that ${\alpha}$-tocopherol had no effect on GVBD and MII as compared to control group, but when ${\alpha}$-tocopherol added to maturation medium the rate of cleavage decreased. This indicates interaction of above mentioned factors in any of the treatments showed no significant differences on the rate of maturation and cleavage stages (MII, GVBD and cleavage) (p > 0.05). The oocytes co-cultured with granulosa cells for 24 h had beneficial effects on cleavage rate. The maximum MII and cleavage rates were achieved when oocytes had extra 12 h culture in the maturation medium without granulosa cells. Results also showed our modified co-culture system (CG + 12hMM), improved rates of MII and the cleavage in comparison with other studied maturation systems.

Change of Stratification of Three Dimensional Culture by Gingival Keratinocytes & Fibroblasts (치은 각화상피세포와 섬유아세포를 이용한 삼차원적 배양시 중층화 동안의 변화)

  • Jung, Tae-Heup;Hyun, Ha-Na;Kim, Yun-Sang;Kim, Eun-Cheol;You, Hyung-Keun;Shin, Hyung-Shik
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.1
    • /
    • pp.129-142
    • /
    • 2002
  • Epithelial-mesenchymal interaction plays a important role in cell growth and differentiation. This interaction is already well known to have an importance during the organ development as well as cell growth and differentiation. However, in vitro experimental model is not well developed to reproduce in vivo cellular microenvironment which provide a epithelial-mesenchymal interaction. Because conventional monolayer culture lacks epithelial-mensenchymal interaction, cultivated cells have an morphologic, biochemical, and functional characteristics differ from in vivo tissue. Moreover, it's condition is not able to induce cellular differention due to submerged culture condition. Therefore, the aims of this study were to develop and evaualte the in vitro experimental model that maintains epithelial-mesenchymal interaction by organotypic raft culture, and to characterize biologic properties of three-dimensionally reconstituted oral keratinocytes by histological and immunohistochemical analysis. The results were as follow; 1. Gingival keratinocytes reconstituted by three-dimensional organotypic culture revealed similar morphologic characteristics to biopsied patient specimen showing stratification, hyperkeratinosis, matutation of epithelial architecture. 2. Connective tissue structure was matured, and there is no difference during stratification period of epithelial 3-dimensional culture. 3. The longer of air-exposure culture on three-dimensionally reconstituted cells, the more epithelial maturation, increased epithelial thickness and surface keratinization 4. In reconstitued mucosa, the whole epidermis was positively stained by anti-involucrin antibody, and there is no difference according to air-exposured culture period. 5. The Hsp was expressed in the epithelial layer of three-dimensionally cultured cells, especially basal layer of epidermis. The change of Hsp expression was not significant by culture stratification. 6. Connexin 43, marker of cell-cell communication was revealed mild immunodeposition in reconstitued epithelium, and there is no significant expression change during stratification. These results suggest that three-dimensional oragnotypic co-culture of normal gingival keratinocytes with dermal equivalent consisting type I collagen and gingival fibroblasts results in similar morphologic and immunohistochemical characteristics to in vivo patient specimens. And this culture system seems to provide adequate micro-environment for in vitro tissue reconstitution. Therefore, further study will be focused to study of in vitro gingivitis model, development of novel perioodntal disease therapeutics and epithelial-mensenchymal interaction.

Fibroblastic Reticular Cell Derived from Lymph Node Is Involved in the Assistance of Antigen Process (림프절 유래 fibroblastic reticular cell의 효율적 항원처리 관련성에 대한 연구)

  • Kim, Min Hwan;Lee, Jong-Hwan
    • Journal of Life Science
    • /
    • v.26 no.9
    • /
    • pp.1027-1032
    • /
    • 2016
  • Antigen is substance causing disease derived from pathogen. Living organism has the immune system in terms of defense mechanism against antigen. Antigen is processed through several pathways such as phagocytosis, antibody action, complement activation, and cytotoxins by NK or cytotoxic T lymphocyte via MHC molecule. Lymph node (LN) is comprised of the complicated 3 dimensional network and several stromal cells. Fibroblastic reticular cells (FRC) are distributed in T zone for interaction with T cells. FRC produces the extra cellular matrix (ECM) into LN for ECM reorganization against pathogen infections and secretes homing chemokines. However, it has not so much been known about the involvement of the antigen process of FRC. The present report is for the function of FRC on antigen process. For this, FRC was positioned with several infected situations such as co-culture with macrophage, T cell, lipopolysaccharide (LPS) and TNFα stimulation. When co-culture between FRC with macrophage and T cells was performed, morphological change of FRC was observed and empty space between FRCs was made by morphological change. The matrix metallo-proteinase (MMP) activity was up-regulated by Y27632 and T cells onto FRC. Furthermore, inflammatory cytokine, TNFα regulated the expression of adhesion molecules and MHC I antigen transporter in FRC by gene chip assay. NO production was elevated by FRC monolayer co-cultured with macrophage stimulated by LPS. GFP antigen was up-taken by macrophage co-cultured with FRC. Collectively, it suggests that FRC assists of the facilitation of antigen process and LN stroma is implicated into antigen process pathway.

The Studies on the Development of Human Blastocyst Embryos in IVF -ET Program - II. The Development of Human Blastocyst Embryos by co-culture with Cumulus Cells (IVF-ET Program에서 Blastocyst 배아의 발생에 관한 연구 - II. 난구세포 공동배양에 의한 Blastocyst 배아의 발생)

  • Lee, Suk-Won;Yoon, San-Hyun;Yoon, Hye-Gyun;Cho, Hyon-Jin;Heo, Yong-Soo;Yoon, Hye-Jin;Park, Se-Pill;Lee, Won-Don;Lim, Jin-Ho
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.25 no.1
    • /
    • pp.35-41
    • /
    • 1998
  • This study was carried out to investigate the development rates of human embryos co-cultured with cumulus cells to each blastocyst stage. Human zygotes were co-cultured on cumulus cell monolayer in YS medium supplemented with 20% hFF. On day 2, if patient had four or more "good" embryos (regular blastomeres without fragmentation), embryos were further cultured for 72hrs. Blastocysts on day 5 were classified into early blastocyst (ErB), early expanding blastocyst (EEB), middle expanding Blastocyst (MEB), and expanded blastocyst (EdB) on the basis of their morphological aspects of trophectoderm cells and blastocoele. Subsequently, maximum 3 of best blastocysts were transferred in 486 cycles. The results in this study were as follows: Patients who had four or more "good" embryos on day 2 were 498 persons, but patients whose embryos could not be transferred due to failure in development to the blastocyst stage on day 5 were 12 persons (2.4%). The development rate of embryos to the blastocyst stage was 58.2% (2,885/4,957) on day 5, and the rates that developed to the ErB, EEB, MEB, and EdB stage were 15.0% (743/4,957), 14.9% (739/4,957), 14.4% (714/ 4,957), and 13.9% (689/4,957), respectively. Total 1366 blastocysts were transferred in 486 cycles (mean number=2.81). The implantation rate and the ongoing implantation rate obtained by observing the number of G-sac and FHB were 29.9% (409/1,366) and 22.5% (308/1,366), respectively. The clinical pregnancy rate was 51.2% (249/486), and the ongoing pregnancy rate' was 39.1% (190/486). Among women showing ongoing pregnancy, women with singleton were 50% (95/190), women with twin were 37.9% (72/190), and women with triplet were 12.1% (23/190). Although triplet pregnancy rate in this study was high such as 12.1%, because many blastocysts with high viability were produced in our co-culture system using cumulus cells on day 5, we really believe that a multiple pregnancy except twin should not occur by selecting good embryos for maximum two blastocyst transfer. These results demonstrate that autologous cumulus cells may be used for the production of blastocysts with high developmental competence, and the use of autologous cumulus cells to be collected easily, and to be treated conveniently at OPU must be an effective means for obtaining high implantation and pregnancy rate.

  • PDF

The Effects of the Epithelial Cells of Genital Tract on the Development of Mouse Early Embryos and Human Fertilized Oocytes (생쥐 초기배아와 사람의 수정란의 발생에 미치는 생식수관 상피세포의 영향에 관한 연구)

  • Lee, H.J.;Byun, H.K.;Kim, J.W.;Hwang, J.H.;Jun, J.Y.;Kim, M.K.
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.21 no.3
    • /
    • pp.315-323
    • /
    • 1994
  • Mammalian oviductal epithelial cells have been known to improve in vitro fertilization and embryonic development. Recently, co-cultured human embryos with the epithelial cells in human genital tract has been reported to improve the pregnancy rate. The purpose of the study was to investigate the effects of the epithelial cells of human genital tract on the development of mouse early embryos and human fertilized oocytes. The epithelial cells of human genital tract were collected from the fallopian tubes which were obtained during hysterectomy in fertile women and from the endometrium during endometrium biopsy. Collected human ampullary cells(HACs) and endometrial cells(HECs) were cultured for 10 days to establish primary monolayer. Second passaged HACs and HECs were obtained by trypsinization were cryopreserved in PBS with 1.5 M DMSO for later use. To investigate the effect when co-cultured with HACs and HECs, we tried to apply strict quality control on mouse embryo, from two cell to blastocyst prior to human trial. The results of quality control were as follows; In Group I (Ham's F10 with 10% FCS), Group IT (co-cultured with HACs) and Group ill (co-cultured with HECs), developmental rates to blastocyst were 63.3%(253/400), 76.0%(304/ 400),74.0%(296/400), respectively. Hatching rates were 36.8%(147/400), 41.80/0(167/400), 38.0%(152/400), respectively(p<0.05). To perform the human IVF, cryopreserved HACs were thawed at 37$^{\circ}C$ waterbath, seeded on the well dish and cultured for 48 hI'S. The pronuclear stage embryos were transferred to the seeded well dish. After 24 hRS, co-cultured embryos were examined and transferred to patient's uterus. The results of human IVF when co-cultured with HACs were that fertilization and developmental rates were 61.8% (256/414), 95.3% (244/256) as compared with 57.2% (279/488) and 94.6%(264/279) in Ham's F10 supplemented with 10% FCS(control). However, 62.9% (161/256) of co-cultured human embryos showed good embryos(no or slight fragmentation) as compared with 53.8 % (150/279) in control(p < 0.05). Pregnancy rate was 40.0% (12/30) when co-cultured with HACs whereas 30.6%(11/36) in control. In conclusions, co-culture system using HACs and HECs improved the developmental and hatching rates of mouse embryo. Also, in human IVF system when co-cultured with HACs, it improved both the quality of human embryos and the pregnancy rate.

  • PDF