• Title/Summary/Keyword: Cell growth state

Search Result 271, Processing Time 0.027 seconds

Anti-tumor Effects of Penfluridol through Dysregulation of Cholesterol Homeostasis

  • Wu, Lu;Liu, Yan-Yang;Li, Zhi-Xi;Zhao, Qian;Wang, Xia;Yu, Yang;Wang, Yu-Yi;Wang, Yi-Qin;Luo, Feng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.1
    • /
    • pp.489-494
    • /
    • 2014
  • Background: Psychiatric patients appear to be at lower risk of cancer. Some antipsychotic drugs might have inhibitory effects on tumor growth, including penfluridol, a strong agent. To test this, we conducted a study to determine whether penfluridol exerts cytotoxic effects on tumor cells and, if so, to explore its anti-tumor mechanisms. Methods: Growth inhibition of mouse cancer cell lines by penfluridol was determined using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Cytotoxic activity was determined by clonogenic cell survival and trypan blue assays. Animal tumor models of these cancer cells were established and to evaluate penfluridol for its anti-tumor efficacy in vivo. Unesterified cholesterol in cancer cells was examined by filipin staining. Serum total cholesterol and tumor total cholesterol were detected using the cholesterol oxidase/p-aminophenazone (CHOD-PAP) method. Results: Penfluridol inhibited the proliferation of B16 melanoma (B16/F10), LL/2 lung carcinoma (LL/2), CT26 colon carcinoma (CT26) and 4T1 breast cancer (4T1) cells in vitro. In vivo penfluridol was particularly effective at inhibiting LL/2 lung tumor growth, and obviously prolonged the survival time of mice bearing LL/2 lung tumors implanted subcutaneously. Accumulated unesterified cholesterol was found in all of the cancer cells treated with penfluridol, and this effect was most evident in LL/2, 4T1 and CT26 cells. No significant difference in serum cholesterol levels was found between the normal saline-treated mice and the penfluridol-treated mice. However, a dose-dependent decrease of total cholesterol in tumor tissues was observed in penfluridol-treated mice, which was most evident in B16/F10-, LL/2-, and 4T1-tumor-bearing mice. Conclusion: Our results suggested that penfluridol is not only cytotoxic to cancer cells in vitro but can also inhibit tumor growth in vivo. Dysregulation of cholesterol homeostasis by penfluridol may be involved in its anti-tumor mechanisms.

Inhibition of mouse SP2/0 myeloma cell growth by the B7-H4 protein vaccine

  • Mu, Nan;Liu, Nannan;Hao, Qiang;Xu, Yujin;Li, Jialin;Li, Weina;Wu, Shouzhen;Zhang, Cun;Su, Haichuan
    • BMB Reports
    • /
    • v.47 no.7
    • /
    • pp.399-404
    • /
    • 2014
  • B7-H4 is a member of B7 family of co-inhibitory molecules and B7-H4 protein is found to be overexpressed in many human cancers and which is usually associated with poor survival. In this study, we developed a therapeutic vaccine made from a fusion protein composed of a tetanus toxoid (TT) T-helper cell epitope and human B7-H4IgV domain (TT-rhB7-H4IgV). We investigated the anti-tumor effect of the TT-rhB7-H4IgV vaccine in BALB/c mice and SP2/0 myeloma growth was significantly suppressed in mice. The TT-rhB7-H4IgV vaccine induced high-titer specific antibodies in mice. Further, the antibodies induced by TT-rhB7-H4IgV vaccine were capable of depleting SP2/0 cells through complement-dependent cytotoxicity (CDC) in vitro. On the other hand, the poor cellular immune response was irrelevant to the therapeutic efficacy. These results indicate that the recombinant TT-rhB7-H4IgV vaccine might be a useful candidate of immunotherapy for the treatment of some tumors associated with abnormal expression of B7-H4.

HOCl Oxidation-modified CT26 Cell Vaccine Inhibits Colon Tumor Growth in a Mouse Model

  • Zhou, Rui;Huang, Wen-Jun;Ma, Cong;Zhou, Yan;Yao, Yu-Qin;Wang, Yu-Xi;Gou, Lan-Tu;Yi, Chen;Yang, Jin-Liang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.8
    • /
    • pp.4037-4043
    • /
    • 2012
  • Despite progress in elucidating mechanisms associated with colorectal cancer and improvement of treatment methods, it remains a frequent cause of death worldwide. New and more effective therapies are therefore urgently needed. Recent studies have shown that immunogenicity of whole ovarian tumor cells and subsequent T cell response were potentiated by oxidation modification with hypochlorous acid (HOCl) in vitro and ex vivo. These results prompted us to investigate the protective antitumor response with an HOCl treated CT26 colorectal cancer cell vaccine in an in vivo mouse model. Administration of HOCl modified vaccine triggered robust antitumor immunity to autologous tumor cells in mice and prolonged survival period significantly. In addition, increased necrosis and apoptosis were found in tumor tissue from the oxidation group. Interestingly, ELISPOT assays showed that specific T cell responses were not elicited in response to the immunizing cellular antigen, in contrast to raising sera antibody titer and antibody binding activity shown by ELISA assay and flow cytometry. Further evaluation of the mechanisms underlying HOCl modified vaccine mediated humoral immunity highlighted the role of antibody-dependent cell-mediated cytotoxicity. These results combined with previous studies suggest that HOCl oxidation modified whole cell vaccine has wide applicability as a cancer vaccine because it can target both T cell- and B cell-specific responses. It may thus represent a promising approach for the immunotherapy of colorectal cancer.

GROWTH AND DIFFERENTIATION OF CONDUCTING AIRWAY EPITHELIAL CELLS IN CULTURE

  • Reen Wu;Zhao, Yu-Hua;Mary M. J. Chang
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.04a
    • /
    • pp.80-104
    • /
    • 1996
  • The development of routine techniques for the isolation and in vitro maintenance of conducting airway epithelial cells in a differentiated state provides an ideal model to study the factors involved in the regulation of the expression of mucocilicary differentiation. Several key factors and conditions have been identified. These factors and conditions include the use of biphasic culture technique to achieve mucociliary differentiation and the use of such stimulators, the thickness of collagen gel substratum, the calcium level, and vitamin A, and such inhibitors, the growth factors EGF and insulin, and steroid hormones, for mucous cell differentiation. Using the defined culture medium, the life cycle of the mucous cell population in vitro was investigated. It was demonstrated that the majority of the mucous cell population in primary cultures is not involved in DNA replication. However, the mucous cell type is capable of self-renewal in culture and this reproduction is vitamin A dependent. furthermore, differentiation from non-mucous cell type to mucous cell type can be demonstrated by adding back a positive regulator such as vitamin A to the “starved” culture. Cell kinetics data suggest that vitamin A-dependent mucous cell differentiation in culture is a DNA replication-independent process and the process is inhibited by TGF-${\beta}$1.

  • PDF

Lactobacillus acidophilus Contributes to a Healthy Environment for Vaginal Epithelial Cells

  • Pi, Woo-Jin;Ryu, Jae-Sook;Roh, Jae-Sook
    • Parasites, Hosts and Diseases
    • /
    • v.49 no.3
    • /
    • pp.295-298
    • /
    • 2011
  • Lactobacillus species in the female genital tract are thought to act as a barrier to infection. Several studies have demonstrated that lactobacilli can adhere to vaginal epithelial cells. However, little is known about how the adherence of lactobacilli to vaginal epithelial cells affects the acidity, cell viability, or proliferation of the lactobacilli themselves or those of vaginal epithelial cells. Lactobacillus acidophilus was co-cultured with immortalized human vaginal epithelial cells (MS74 cell line), and the growth of L. acidophilus and the acidity of the culture medium were measured. MS74 cell density and viability were also assessed by counting cell numbers and observing the cell attachment state. L. acidophilus showed exponential growth for the first 6 hr until 9 hr, and the pH was maintained close to 4.0-5.0 at 24 hr after culture, consistent with previous studies. The growth curve of L. acidophilus or the pH values were relatively unaffected by co-culture with MS74 cells, confirming that L. acidophilus maintains a low pH in the presence of MS74 cells. This co-culture model could therefore potentially be used to mimic vaginal conditions for future in vitro studies. On the other hand, MS74 cells co-cultured with L. acidophilus more firmly attached to the culture plate, and a higher number of cells were present compared to cells cultured in the absence of L. acidophilus. These results indicate that L. acidophilus increases MS74 cell proliferation and viability, suggesting that lactobacilli may contribute to the healthy environment for vaginal epithelial cells.

Characterization of Physiological Changes in $S3H5/\gamma{2bA2}$ Hybridoma Cells During Adaptation to Low Serum Media

  • Lee, Gyun-Min;Joanne, Savinell
    • Journal of Microbiology and Biotechnology
    • /
    • v.2 no.2
    • /
    • pp.141-151
    • /
    • 1992
  • Physiological changes of the murine hybridoma cell line $S3H5/\gamma{2bA2}$ during adaptation to RPMI 1640 medium with 1%(v/v) fetal bovine serum were characterized in terms of cell growth, antibody production, morphology, and metabolic quotients. Cells adapted to 1% serum medium in T-flasks became sensitive to shear induced by mechanical agitation and required at least 5% serum in the medium or spent medium for cell growth in spinner flasks, while cells adapted to 10% serum medium in T-flasks could grow in 1% serum medium in spinner flasks. Consequently, long-term adaptation to low serum media may not give the expected growth enhancement. After adaptation to 1% serum medium, changes in cell morphology were observed. The cells in 10% serum medium were uniform and circular, while cells in 1% medium were irregularly shaped. The DNA contents, which were measured by flow cytometry, were almost constant among the cells in the range of 1% to 10%. Further, no significant changes in energy metabolism and specific monoclonal antibody production rate were observed among these cells.

  • PDF

Enhanced Proliferation and Altered Intracellular Zinc Levels in Early- and Late-Passage Mouse Aorta Smooth Muscle Cells

  • Moon Sung-Kwon;Ha Sang-Do
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.1
    • /
    • pp.44-47
    • /
    • 2000
  • Cell growth and DNA synthesis were studied from a cultured early- and late- pas- sage mouse aorta smooth muscle cell (MASMC) because the proliferation of vascular smooth muscle cell (VSMC) is a key factor in development of atherosclerosis. In this study, the cells were cultured in fetal bovine serum (FBS) and stimulated by growth factors such as thrombin and platelet-derived growth factor-BB (PDGF-BB). Compared to the number of early-passage MASMC (passage 3 to 9) the number of late-passage MASMC (passage 30 to 40) in a normal serum state was increased 2 fold at Day 1, 3 and 6 in culture, respectively. Incorporation of $[^3H]$ thymidine into DNA induced by serum, PDGF and thrombin in late-passage MASMC was greater than those in early-passage MASMC. We also examined whether intracellular zinc levels would be an aging factor or not. The intracellular zinc level in early- and late-passage MASMC was monitored by using the zinc probe dye N-(6-methoxy-8-quinolyl)-p-toluenesulfonamide. It is interested that late-passage MASMC increased the intracellular fluorescence level of zinc, more than the early passage MASMC did. The alterations of intracellular zinc level occur concurrently with changes in MASMC proliferation rate during aging. This data suggest that the age-associated changes in zinc concentrations may provide a new in vitro model for the study of smooth muscle cell differentiation.

  • PDF

Influence of KOH Solution on the Passivation of Al2O3 Grown by Atomic Layer Depostion on Silicon Solar Cell

  • Jo, Yeong-Jun;Jang, Hyo-Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.299.2-299.2
    • /
    • 2013
  • We investigated the potassium remaining on a crystalline silicon solar cell after potassium hydroxide (KOH) etching and its effect on the lifetime of the solar cell. KOH etching is generally used to remove the saw damage caused by cutting a Si ingot; it can also be used to etch the rear side of a textured crystalline silicon solar cell before atomic layer-deposited Al2O3 growth. However, the potassium remaining after KOH etching is known to be detrimental to the efficiency of Si solar cells. In this study, we etched a crystalline silicon solar cell in three ways in order to determine the effect of the potassium remnant on the efficiency of Si solar cells. After KOH etching, KOH and tetramethylammonium hydroxide (TMAH) were used to etch the rear side of a crystalline silicon solar cell. To passivate the rear side, an Al2O3 layer was deposited by atomic layer deposition (ALD). After ALD Al2O3 growth on the KOH-etched Si surface, we measured the lifetime of the solar cell by quasi steady-state photoconductance (QSSPC, Sinton WCT-120) to analyze how effectively the Al2O3 layer passivated the interface of the Al2O3 layer and the Si surface. Secondary ion mass spectroscopy (SIMS) was also used to measure how much potassium remained on the surface of the Si wafer and at the interface of the Al2O3 layer and the Si surface after KOH etching and wet cleaning.

  • PDF

Potentiation of Apoptin-Induced Apoptosis by Cecropin B-Like Antibacterial Peptide ABPs1 in Human HeLa Cervical Cancer Cell Lines is Associated with Membrane Pore Formation and Caspase-3 Activation

  • Birame, Basse Mame;Wang, Jigui;Yu, Fuxian;Sun, Jiazeng;Li, Zhili;Liu, Weiquan
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.6
    • /
    • pp.756-764
    • /
    • 2014
  • Apoptin, a chicken anemia virus-encoded protein, induces apoptosis in chicken or human tumor cells, localizing in their nuclei as opposed to the cytoplasm of non-transformed cells. The present study was undertaken to investigate whether ABPs1 could potentiate apoptin-induced apoptosis in HeLa cells. ABPs1 and the apoptin genes were successfully cloned into pIRES2-EGFP expression vector and expressed in HeLa cells. We report that ABPs1 augments apoptin cell growth inhibition in a concentration- and time-dependent manner. The DAPI staining and scanning electron microscopy observations revealed apoptotic bodies and plasma membrane pores, which were attributed to apoptin and ABPs1, respectively. Further, ABPs1 in combination with apoptin was found to increase the expression of Bax and to decrease the expression of survivin compared with either agent alone or the control. The apoptotic rate of HeLa cells treated with ABPs1 and apoptin in combination for 48 h was 53.95%. The two-gene combination increased the caspase-3 activity of HeLa cells. Taken together, our study suggests that ABPs1 combined with apoptin significantly inhibits HeLa cell proliferation, and induces cell apoptosis through membrane defects, up-regulation of Bax expression, down-regulation of survivin expression, and activation of the caspase-3 pathway. Thus, the combination of ABPs1 and apoptin could serve as a means to develop novel gene therapeutic agents against human cervical cancer.

A Structured Growth Model of Scutellaria baicalensis G. Plant Cell (Scutellaria baicalensis G. 식물 세포의 구조적 성장 모델)

  • 최정우;조진만;이정건;이원홍;김익환;박영훈
    • KSBB Journal
    • /
    • v.13 no.3
    • /
    • pp.251-258
    • /
    • 1998
  • A structured kinetic model is proposed to describe cell growth and secondary metabolite, flavone glycosides, synthesis in batch suspension culture of Scutellaria baicalensis G. The model has been developed by representing the physiological state of cell described as the activity and viability which can be estimated based on the culture fluorescence. In the model, three type of cells are considered; active-viable, nonactive-viable and dead cells. Viable cell weight could be determined based on the relative fluorescence intensity. The flavone glycosides could be produced by both active-viable and non-active viable cells with a different production rate. And the model includes the cell expansion due to glucose concentration and death phase which accounts for the release of intracellular secondary metabolite into medium. Dependent variables include substrate concentration(glucose), cell mass(dry cell weight and fresh cell weight), product concentration(flavone glycosides), activity and viability. Satisfactory agreement between the model and experimental data is obtained from shake flask culture of Scutellaria baicalensis G. The proposed model can predict the cell growth and flavone glycosides synthesis as well as intermediate materials.

  • PDF