• Title/Summary/Keyword: Cell division cycle

Search Result 333, Processing Time 0.038 seconds

Usefulness of Serum Thymidine Kinase 1 as a Biomarker for Aggressive Clinical Behavior in B-cell Lymphoma (B세포림프종의 임상적 악성도 표지자로서 혈청 Thymidine Kinase 1의 유용성)

  • Kim, Heyjin;Kang, Hye Jin;Lee, Jin Kyung;Hong, Young Jun;Hong, Seok-Il;Chang, Yoon Hwan
    • Laboratory Medicine Online
    • /
    • v.6 no.1
    • /
    • pp.25-30
    • /
    • 2016
  • Background: The cell cycle-dependent enzyme thymidine kinase 1 (TK1) is known to increase during cancer cell proliferation and has been reported as a prognostic marker for various hematologic malignancies and solid tumors. This study aimed to determine the reference interval in Korean healthy controls and to evaluate the usefulness of TK1 as a biomarker for aggressive clinical behavior in B-cell lymphoma patients. Methods: We enrolled 72 previously untreated patients with B-cell lymphoma and 143 healthy controls. Serum TK1 levels were measured by chemiluminescence immunoassay ($Liaison^{(R)}$, DiaSorin, USA). We established the reference intervals in healthy controls. The diagnostic performance of serum TK1 was studied using receiver operating characteristic (ROC) analysis, and the correlation between the cutoff level for serum TK1 and clinical characteristics of B-cell lymphoma was evaluated. Results: The reference range (95th percentile) of serum TK1 in healthy controls was 5.4-21.8 U/L. There was a clear difference in TK1 levels between patients with B-cell lymphoma and healthy controls ($40.6{\pm}68.5$ vs. $11.8{\pm}4.4U/L$, P <0.001). The area under the curve of serum TK1 for the diagnosis of B-cell lymphoma was 0.73 (cutoff, 15.2 U/L; sensitivity, 59.7%; specificity, 83.2%). An increased TK1 level (${\geq}15.2U/L$) correlated with the advanced clinical stage (P <0.001), bone marrow involvement (P =0.013), international prognostic index score (P =0.001), lactate dehydrogenase level (P =0.001), low Hb level (<12 g/dL) (P =0.028), and lymphocyte count (P =0.023). Conclusions: The serum TK1 level could serve as a useful biomarker for aggressive clinical behavior in B-cell lymphoma patients.

L-arginine and N-carbamoylglutamic acid supplementation enhance young rabbit growth and immunity by regulating intestinal microbial community

  • Sun, Xiaoming;Shen, Jinglin;Liu, Chang;Li, Sheng;Peng, Yanxia;Chen, Chengzhen;Yuan, Bao;Gao, Yan;Meng, Xianmei;Jiang, Hao;Zhang, Jiabao
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.1
    • /
    • pp.166-176
    • /
    • 2020
  • Objective: An experiment was conducted to determine the effects of L-arginine (L-Arg) and N-carbamoylglutamic acid (NCG) on the growth, metabolism, immunity and community of cecal bacterial flora of weanling and young rabbits. Methods: Eighteen normal-grade male weanling Japanese White rabbits (JWR) were selected and randomly divided into 6 groups with or without L-Arg and NCG supplementation. The whole feeding process was divided into weanling stage (day 37 to 65) and young stage (day 66 to 85). The effects of L-Arg and NCG on the growth, metabolism, immunity and development of the ileum and jejunum were compared via nutrient metabolism experiments and histological assessment. The different communities of cecal bacterial flora affected by L-Arg and NCG were assessed using high-throughput sequencing technology and bioinformatics analysis. Results: The addition of L-Arg and NCG enhanced the growth of weanling and young rabbit by increasing the nitrogen metabolism, protein efficiency ratio, and biological value, as well as feed intake and daily weight gain. Both L-Arg and NCG increased the concentration of immunoglobulin A (IgA), IgM, and IgG. NCG was superior to L-Arg in promoting intestinal villus development by increasing villus height, villus height/crypt depth index, and reducing the crypt depth. The effects of L-Arg and NCG on the cecal bacterial flora were mainly concentrated in different genera, including Parabacteroides, Roseburia, dgA-11_gut_group, Alistipes, Bacteroides, and Ruminococcaceae_UCG-005. These bacteria function mainly in amino acid transport and metabolism, energy production and conversion, lipid transport and metabolism, recombination and repair, cell cycle control, cell division, and cell motility. Conclusion: L-Arg and NCG can promote the growth and immunity of weanling and young JWR, as well as effecting the jejunum and ileum villi. L-Arg and NCG have different effects in the promotion of nutrient utilization, relieving inflammation and enhancing adaptability through regulating microbial community.

A comparative analysis of cell cycles in diploid and induced triploid tissues in marine medaka(Oryzias dancena) (해산송사리(Oryzias dancena) 2배체와 유도 3배체 조직의 세포주기 비교)

  • Park, In-Seok
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.4
    • /
    • pp.735-740
    • /
    • 2019
  • The aim of this study was to conduct a comparative analysis of the diploid and induced triploid cell cycles in marine medaka, Oryzias dancena, tissues. The mean fraction of cells in the G1, S, and G2+M phases was 85.5%, 7.6%, and 6.9%, respectively, in the tail fin tissues of diploid fish and 91.2%, 3.6%, and 5.2%, respectively, in those of induced triploid fish. The mean fraction of cells in the G1, S, and G2+M phases were 78.4%, 10.6%, and 11.0%, respectively, in the liver tissues of diploid fish; 86.2%, 5.9%, and 7.9%, respectively, in those of induced triploid; 79.3%, 9.4%, and 11.3%, respectively, in the gill tissues of diploid fish; and 85.7%, 5.4%, and 8.9%, respectively, in the induced triploid fish. The differences among the tissues were statistically significant within both the diploid and induced triploid fish (p<0.05). Mitosis was more active in each tissue of the diploid fish than in the corresponding tissues of the induced triploid fish and mitosis was more active in the liver and gill tissues than in the tail fin tissues in both the diploid and induced triploid marine medaka.

Induction of c-Jun Expression by Breast Cancer Anti-estrogen Resistance-3 (BCAR3) in Human Breast MCF-12A Cells (정상적인 인간유방상피세포인 MCF-12세포에서 유방암 항에스토젠 내성인자-3 (BCAR3)에 의한 c-Jun 발현 유도 연구)

  • Oh, Myung-Ju;Kim, Ji-Hyun;Jhun, Byung Hak
    • Journal of Life Science
    • /
    • v.26 no.12
    • /
    • pp.1383-1391
    • /
    • 2016
  • Anti-estrogen drugs such as tamoxifen have been used for treating patients with ER-positive, early breast cancer. However, resistance to anti-estrogen treatment is inevitable in most patients. Breast cancer anti-estrogen resistance-3 (BCAR3) has been identified as the protein responsible for the induction of tamoxifen resistance in estrogen-dependent human breast cancer. We have previously reported that BCAR3 regulates the cell cycle progression and the signaling pathway of EGF and insulin leading to DNA synthesis. In this study, we investigated the functional role of BCAR3 in regulating c-Jun transcription in non-tumorigenic human breast epithelial MCF-12A cells. A transient transfection of BCAR3 increased both the mRNA and protein of c-Jun expression, and stable expression of BCAR3 increased c-Jun protein expression. The overexpression of BCAR3 directly activated the promoter of c-jun, AP-1, and SRE but not that of $NF-{\kappa}B$. Furthermore, single-cell microinjection of BCAR3 expression plasmid in the cell cycle-arrested MCF-12A cells induced c-Jun protein expression, and co-injection of dominant negative mutants of Ras, Rac, and Rho suppressed the transcriptional activity of c-Jun in the presence of BCAR3. Furthermore, stable expression of BCAR3 increased the proliferation of MCF-12A cells. The microinjection of inhibitory materials such as anti-BCAR3 antibody and siRNA BCAR3 inhibited EGF-induced c-Jun expression but did not affect IGF-1 induced upregulation of c-Jun. Taken together, we propose that BCAR3 plays a crucial role in c-Jun protein expression and cell proliferation and that small GTPases (e.g., Ras, Rac, and Rho) are required for the BCAR3-mediated activation of c-Jun expression.

Cariporide Enhances the DNA Damage and Apoptosis in Acid-tolerable Malignant Mesothelioma H-2452 Cells

  • Lee, Yoon-Jin;Bae, Jin-Ho;Kim, Soo-A;Kim, Sung-Ho;Woo, Kee-Min;Nam, Hae-Seon;Cho, Moon-Kyun;Lee, Sang-Han
    • Molecules and Cells
    • /
    • v.40 no.8
    • /
    • pp.567-576
    • /
    • 2017
  • The $Na^+/H^+$ exchanger is responsible for maintaining the acidic tumor microenvironment through its promotion of the reabsorption of extracellular $Na^+$ and the extrusion of intracellular $H^+$. The resultant increase in the extracellular acidity contributes to the chemoresistance of malignant tumors. In this study, the chemosensitizing effects of cariporide, a potent $Na^+/H^+-exchange$ inhibitor, were evaluated in human malignant mesothelioma H-2452 cells preadapted with lactic acid. A higher basal level of phosphorylated (p)-AKT protein was found in the acid-tolerable H-2452AcT cells compared with their parental acid-sensitive H-2452 cells. When introduced in H-2452AcT cells with a concentration that shows only a slight toxicity in H-2452 cells, cariporide exhibited growth-suppressive and apoptosis-promoting activities, as demonstrated by an increase in the cells with pyknotic and fragmented nuclei, annexin V-PE(+) staining, a $sub-G_0/G_1$ peak, and a $G_2/M$ phase-transition delay in the cell cycle. Preceding these changes, a cariporide-induced p-AKT down-regulation, a p53 up-regulation, an ROS accumulation, and the depolarization of the mitochondrial-membrane potential were observed. A pretreatment with the phosphatidylinositol-3-kinase (PI3K) inhibitor LY294002 markedly augmented the DNA damage caused by the cariporide, as indicated by a much greater extent of comet tails and a tail moment with increased levels of the p-histone H2A.X, $p-ATM^{Ser1981}$, $p-ATR^{Ser428}$, $p-CHK1^{Ser345}$, and $p-CHK2^{Thr68}$, as well as a series of pro-apoptotic events. The data suggest that an inhibition of the PI3K/AKT signaling is necessary to enhance the cytotoxicity toward the acidtolerable H-2452AcT cells, and it underlines the significance of proton-pump targeting as a potential therapeutic strategy to overcome the acidic-microenvironment-associated chemotherapeutic resistance.

Genome-wide association study identifies 22 new loci for body dimension and body weight traits in a White Duroc×Erhualian F2 intercross population

  • Ji, Jiuxiu;Zhou, Lisheng;Guo, Yuanmei;Huang, Lusheng;Ma, Junwu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.8
    • /
    • pp.1066-1073
    • /
    • 2017
  • Objective: Growth-related traits are important economic traits in the swine industry. However, the genetic mechanism of growth-related traits is little known. The aim of this study was to screen the candidate genes and molecular markers associated with body dimension and body weight traits in pigs. Methods: A genome-wide association study (GWAS) on body dimension and body weight traits was performed in a White $Duroc{\times}Erhualian$ $F_2$ intercross by the illumina PorcineSNP60K Beadchip. A mixed linear model was used to assess the association between single nucleotide polymorphisms (SNPs) and the phenotypes. Results: In total, 611 and 79 SNPs were identified significantly associated with body dimension traits and body weight respectively. All SNPs but 62 were located into 23 genomic regions (quantitative trait loci, QTLs) on 14 autosomal and X chromosomes in Sus scrofa Build 10.2 assembly. Out of the 23 QTLs with the suggestive significance level ($5{\times}10^{-4}$), three QTLs exceeded the genome-wide significance threshold ($1.15{\times}10^{-6}$). Except the one on Sus scrofa chromosome (SSC) 7 which was reported previously all the QTLs are novel. In addition, we identified 5 promising candidate genes, including cell division cycle 7 for abdominal circumference, pleiomorphic adenoma gene 1 and neuropeptides B/W receptor 1 for both body weight and cannon bone circumference on SSC4, phosphoenolpyruvate carboxykinase 1, and bone morphogenetic protein 7 for hip circumference on SSC17. Conclusion: The results have not only demonstrated a number of potential genes/loci associated with the growth-related traits in pigs, but also laid a foundation for studying the genes' role and further identifying causative variants underlying these loci.

Reaction Rate with Hydrogen and Hydrogen-storage Capacity of an 80Mg+14Ni+6TaF5 Alloy Prepared by High-energy Ball Milling in Hydrogen (수소 분위기에서 고 에너지 볼 밀링으로 제조한 80Mg+14Ni+6TaF5합금의 수소와의 반응 속도와 수소 저장 용량)

  • PARK, HYE RYOUNG;SONG, MYOUNG YOUP
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.2
    • /
    • pp.137-143
    • /
    • 2017
  • In the present study, Ni and $TaF_5$ were chosen as additives to enhance the hydriding and dehydriding rates of Mg. A sample with a composition of 80 wt% Mg + 14 wt% Ni + 6 wt% $TaF_5$ (named $80Mg+14Ni+6TaF_5$) was prepared by high-energy ball milling in hydrogen. Its hydriding and dehydriding properties were then examined. At the fourth cycle, the activated sample absorbed 3.88 wt% H for 2.5 min, 4.74 wt% H for 5 min, and 5.75 wt% H for 60 min at 593 K under 12 bar $H_2$. $80Mg+14Ni+6TaF_5$ had an effective hydrogen-storage capacity (the quantity of hydrogen absorbed for 60 min) of about 5.8 wt%. The sample desorbed 1.42 wt% H for 5 min, 3.42 wt% H for 15 min, and 5.09 wt% H for 60 min at 593 K under 1.0 bar $H_2$. Line scanning results by EDS for $80Mg+14Ni+6TaF_5$ before and after cycling showed that the peaks of Ta and F appeared at different positions, indicating that the $TaF_5$ in $80Mg+14Ni+6TaF_5$ was decomposed.

Expressions of A-type and C-type Cyclins Induced by Exogenous Cytokinin Treatment on Leaf Blades and Calli of Rice (Oryza sativa L.) (벼의 엽신 및 캘러스에서 Cytokinin 유도성 A-type 및 C-type Cyclin 유전자의 발현 분석)

  • Lee Honggun;Choi Seungho;Hwang Hyunsik;park Jungan;Lee Taekkyun;Park Jongbum;Auh Chungkyoon;Lee Sukchan
    • Journal of Plant Biotechnology
    • /
    • v.32 no.1
    • /
    • pp.15-21
    • /
    • 2005
  • The expression patterns of cyclin genes, which play a crucial role on cell cycle control, were analyzed with rice calli and leaf blades from seedlings. When callus was transferred from media containing the combinations of 2,4-D and kinetin under the dark conditions to medium supplemented with cytokinin-only on 7 days after the cultures, the expression levels of A-, B- and C-type cyclins from callus were increased significantly. Despite the fact that cyclin genes were well expressed on leaf blades rather than other organs in rice seedlings, rice leaf blades grown on the medium containing various combinations and concentrations of cytokinin for 24 hours had no major effect on the expression patterns of cyclins except zeatin. The relation between cytokinin regulation and the expression of cyclins of rice is discussed.

INVOLVEMENT OF p27CIP/KIP IN HSP25 OR INDUCIBLE HSP70 MEDIATED ADAPTIVE RESPONSE BY LOW DOSE RADIATION

  • Seo, Hang-Rhan;Chung, Hee-Yong;Lee, Yoon-Jin;Baek, Min;Bae, Sang-Woo;Lee, Su-Jae;Lee, Yun-Sil
    • Nuclear Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.285-292
    • /
    • 2006
  • Thermoresistant (TR) clones of radiation-induced fibrosarcoma (RIF) cells have been reported to show an adaptive response to 1cGy of low dose radiation, and HSP25 and inducible HSP70 are involved in this process. In this study, to further elucidate the mechanism by which HSP25 and inducible HSP70 regulate the adaptive response, HSP25 or inducible HSP70 overexpressed RIF cells were irradiated with 1cGy and the cell cycle was analyzed. HSP25 or inducible HSP70 overexpressed cells together with TR cells showed increased G1 phase after 1cGy irradiation, while RIF cells did not. $[^3H]-Thymidine$ and BrdU incorporation also indicated that both HSP25 and inducible HSP70 are involved in G1 arrest after 1cGy irradiation. Molecular analysis revealed upregulation of p27Cip/Kip protein in HSP25 and inducible HSP70 overexpressed cells, and cotransfection of p27Cip/Kip antisense abolished the induction of the adaptive response and 1cGy-mediated G1 arrest. The above results indicate that induction of an adaptive response by HSP25 and inducible HSP70 is mediated by upregulation of p27Cip/Kip protein, resulting in low dose radiation-induced G1 arrest.

RNA-RNA Interactions between RNA Elements at the 5' end and at the Upstream of sgRNA of RNA Genome are Required for Potato virus X RNA Replication

  • Park, Mi-Ri;Park, Sang-Ho;Cho, Sang-Yun;Hemenway, Cynthia L.;Choi, Hong-Soo;Sohn, Seong-Han;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • v.24 no.3
    • /
    • pp.289-295
    • /
    • 2008
  • RNA-RNA interactions and the dynamic RNA conformations are important regulators in virus replication in several RNA virus systems and may also involved in the regulation of many important virus life cycle phases, including translation, replication, assembly, and switches in these important stages. The 5' non-translated region of Potato virus X(PVX) contains multiple cis-acting elements that facilitate various viral processes. It has previously been proposed that RNA-RNA interactions between various RNA elements present in PVX RNA genome are required for PVX RNA accumulation(Hu et al., 2007; Kim and Hemenway, 1999). This model was based on the potential base-pairing between conserved sequence elements at the upstream of subgenomic RNAs(sgRNAs) and at the 5' and 3' end of RNA genome. We now provide more evidence that RNA-RNA base-pairing between elements present at the 5' end and upstream of each sgRNA is required for efficient replication of genomic and subgenomic plus-strand RNA accumulation. Site-directed mutations introduced at the 5' end of plus-strand RNA replication defective mutant(${\Delta}12$) increasing base-pairing possibility with conserved sequence elements located upstream of each sgRNAs restored genomic and subgenomic plus-strand RNA accumulation and caused symptom development in inoculated Nicotiana benthamiana plants. Serial passage of a deletion mutant(${\Delta}8$) caused more severe symptoms and restored wild type sequences and thus retained possible RNA-RNA base-pairing. Altogether, these results indicate that the RNA element located at the 5' end of PVX genome involved in RNA-RNA interactions and play a key role in high-level accumulation of plus-strand RNA in vivo.