• Title/Summary/Keyword: Cell division cycle

Search Result 332, Processing Time 0.023 seconds

Study of Methylglyoxal and Phosphorus Stress on Algae (조류의 Methylglyoxal과 인 Stress 연구)

  • 이기태
    • Environmental Analysis Health and Toxicology
    • /
    • v.13 no.3_4
    • /
    • pp.133-142
    • /
    • 1998
  • Effects of phosphorous (P) and methylglyoxal (MG) on the cell number, dry weight, chlorophyll content, photosynthetic and respiratory rate, phosphate uptake and protein content of green algae (Scenedesrnus obliquus) were studied. The algal cell number from the medium treated with 0.5-1.0 mM of MG at 1/2 P or 1/4 P concentration was significantly lower than those of algae treated :with full strength of phosphrous in medium. The inhibitory effect of MG on algal cell division was enhenced at low concentration of phosphorous in medium. At the beginning of logrithmic phase of algal growth, the mean dry weight of algae from the medium without MG-treatment in 1/2 P media was significantly higher than that of algae treated with MG. After logrithmic phase of growth cycle, the mean dry weight of algae from the medium with 1.0 mM of MG-treatment in 1/4 P media was significantly lower than that of algae treated with or without MG. At logrithmic phase of algal growth, there were significant differences in the chlorophyll content among all groups of tested algae with various concentrations of P and MG. At 15 days after inoculation, the mean chlorophyll content per algal cell from the media without MG-treatment in 1/2P was significantly higher than that of other cells from MG-treated media. The adverse effect of MG at concentration of 0.5-1.0mM in 1/2 and 1/4 P media on photosynthetic rate was observed. The mean photosynthetic rate of algal cell without P and MG treatment at 15 days after inoculation was significantly higher than that of MGtreated algae. After logarithmic phase, the algal cell treated with 0.5mM of MG with full strength of phosphorous showed significantly high respiratory rate than that of other cell groups. There were significant differences in mean phosphate uptake rate among all groups of Scenedesmus obliquus at logarithmic phase. At 12 days after inoculation, phosphate uptake rate per each algal cell from the basic media without MG and P treatment was rapidly reduced which shows early introduction to stationary phase.

  • PDF

Implantation Rate and Clinical Pregnancy Rate According to Dosage and Timing of Progesterone Administration for Secretory Endometrial Preparation in Frozen-Thawed Embryo Transfer Cycles (동결보존 배아이식에서 분비기 자궁내막 유도시 프로게스테론 투여 방법에 따른 착상율과 임신율의 비교)

  • Park, Chan-Woo;Hur, Kuol;Kim, Moon-Young;Song, Hyun-Jung;Kim, Hye-Ok;Yang, Kwang-Moon;Kim, Jin-Yeong;Song, In-Ok;Yoo, Keun-Jae;Cheon, Kang-Woo;Byun, Hye-Kyung;Koong, Mi-Kyoung;Kang, Inn-Soo
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.30 no.3
    • /
    • pp.193-202
    • /
    • 2003
  • Objective: To evaluate the difference of implantation rate (IR) and clinical pregnancy rate (CPR) between two protocols of endometrial preperation in women undergoing frozen-thawed embryo transfer (FET) cycles. Methods: This study was performed during the different time periods: A retrospective study from January 2000 to June 2001 (phase I) and a prospective study from July 2001 to March 2002 (phase II). All the patients received estradiol valerate (6 mg p.o. daily) starting from day 1 or 2 of the menstrual cycle without pituitary down regulation. Progesterone was administered around day 14 after sonographic confirmation of endometrial thickness $\geq$7 mm and no growing follicle. In Group A (n=88, 99 cycles) of phase I, progesterone was administered i.m. at a dose of 50 mg daily from one day prior to thawing of pronuclear (PN) stage frozen embryo or three days prior to thawing of 6-8 cell stage frozen embryo and then each stage embryos were trasnsferred 2 days or 1 day later after thawing. In Group B (n=246, 299 cycles) of phase I, patients recieved progesterone 100 mg i.m. from one day earlier than group A; two days prior to PN embryo thawing, four days prior to of 6-8 cell embryo thawing. During the phase II, to exclude any differences in embryo transfer procedures, in Group 1 (n=23, 28 cycles) of phase II embryo was transfered by one who have used the progesterone protocol since the phase I. In Group 2 (n=122, 139 cycles) of phase II embryo was transfered by one who use the progesterone protocol from the phase II. Results: When compared across the phase and group, there were no significant differences in the characteristics. During the phase I, there were significant increase in IR (14.4% vs 5.9%, p=0.001) and CPR (28.3% vs 14.5%, p=0.000) in group A. During the phases II, IR (11.8% vs 10.6%) and CPR (27.6% vs 27.3%) show no differences between two groups. Conclusions: In FET cycles, IR and CPR are increased significantly by the change of dosage and timing of progesterone administraton. And the timing is considered to be more important factor because the dosage of progesterone did not affect implantation window in previous studies. Therefore, we suggest that progesterone administration in FET cycle should begin from one day prior to PN stage embryo thawing and three days prior to 6-8 cell stage embryo thawing.

Relationship between the nucleolar cycle and chromatoid body formation in the spermatogenesis of $Phrynops$ $geoffroanus$ (Reptilia Testudines)

  • Peruquetti, Rita L.;Taboga, Sebastiao R.;Cabral, Silvia R.;De Oliveira, Classius;Azeredo-Oliveira, Maria T.
    • Animal cells and systems
    • /
    • v.16 no.2
    • /
    • pp.104-113
    • /
    • 2012
  • The nucleolus is a distinct nuclear territory involved in the compartmentalization of nuclear functions. There is some evidence of a relationship between nuclear fragmentation during spermatogenesis and chromatoid body (CB) formation. The CB is a typical cytoplasmic organelle of haploid germ cells, and is involved in RNA and protein accumulation for later germ-cell differentiation. The goal of this study was to qualitatively and quantitatively describe the nucleolar cycle during the spermatogenesis of $Phrynops$ $geoffroanus$ (Reptilia Testudines), and compare this nucleolar fragmentation with CB formation in this species through the use of cytochemical and ultrastructural analysis. Qualitative analysis showed a fragmentation of the nuclear material after pachytene of the first meiotic division in the primary spermatocytes. Quantitative analysis of the nucleolar cycle revealed a significant difference in the number of nucleoli and in the size of the nucleolus between spermatogonia and early spermatids. Using ultrastructural analysis, we recorded the beginning of the CB formation process in the cytoplasm of primary spermatocytes at the same time as when nuclear fragmentation occurs. In the cytoplasm of primary spermatocytes, the CB was observed in association with mitochondrial aggregates and the Golgi complex. In the cytoplasm of early spermatids, the CB was observed in association with lipid droplets. In conclusion, our data show that the nucleolus plays a role in the CB formation process. During spermatogenesis of $P.$ $geoffroanus$, the CB is involved in some important biological processes, including acrosome formation and mitochondrial migration to the spermatozoon tail and middle piece region.

Effects and Molecular Mechanisms of Eupatorium chinensis var. simplicifolium Extract on Abnormal Proliferation of Vascular Smooth Muscle Cells (등골나물추출물의 혈관 평활근 세포의 비정상 증식에 대한 억제 효과 및 분자기작)

  • Kim, Min-Jeong;Kim, Jihee;Lee, Jin-Ho;Kim, Minah;Woo, Keunjung;Kim, Han Sung;Kim, Tack-Joong
    • Journal of Life Science
    • /
    • v.31 no.9
    • /
    • pp.787-795
    • /
    • 2021
  • Eupatorium chinensis var. simplicifolium (EUC) has anti-inflammatory and antioxidant effects. Young sprouts of EUC have been used as food for a long time, and the whole EUC plant has been used as an herbal remedy in oriental medicine. Arteriosclerosis, or chronic inflammation in arterial vessels, is a cardiovascular disease and is involved in various disorders. Cardiovascular diseases such as restenosis and neuropathic hyperplasia are mainly caused by abnormal growth and movement due to multiple growth factors in vascular smooth muscle cells (VSMCs). Platelet-derived growth factor (PDGF) is a mitogen released from damaged vessel walls and is involved in the proliferation and migration of VSMCs. To determine the effects of EUC on the abnormal proliferation and migration of VSMCs, the present study investigated intracellular signaling pathways in PDGF-BB-induced VSMCs treated with and without EUC. Pretreating PDGF-BB-induced VSMCs with EUC tended to effectively decrease cell proliferation and migration. Subsequently, the intracellular growth-related signaling pathways of AKT, phospholipase C gamma (PLC-γ), and mitogen-activated protein kinase (MAPK) were investigated using western blotting to confirm inhibited phosphorylation. Furthermore, flow cytometry data showed that EUC blocked the cell cycle of VSMCs. These results suggest that EUC can inhibit the proliferation and migration of VSMCs by controlling the cell cycle and growth factor receptors. Furthermore, this indicates that EUC can be used as a preventative against cardiovascular disease resulting from abnormal proliferation and migration of VSMCs.

Knockdown of LKB1 Sensitizes Endometrial Cancer Cells via AMPK Activation

  • Rho, Seung Bae;Byun, Hyun Jung;Kim, Boh-Ram;Lee, Chang Hoon
    • Biomolecules & Therapeutics
    • /
    • v.29 no.6
    • /
    • pp.650-657
    • /
    • 2021
  • Metformin is an anti-diabetic drug and has anticancer effects on various cancers. Several studies have suggested that metformin reduces cell proliferation and stimulates cell-cycle arrest and apoptosis. However, the definitive molecular mechanism of metformin in the pathophysiological signaling in endometrial tumorigenesis and metastasis is not clearly understood. In this study, we examined the effects of metformin on the cell viability and apoptosis of human cervical HeLa and endometrial HEC-1-A and KLE cancer cells. Metformin suppressed cell growth in a dose-dependent manner and dramatically evoked apoptosis in HeLa cervical cancer cells, while apoptotic cell death and growth inhibition were not observed in endometrial (HEC-1-A, KLE) cell lines. Accordingly, the p27 and p21 promoter activities were enhanced while Bcl-2 and IL-6 activities were significantly reduced by metformin treatment. Metformin diminished the phosphorylation of mTOR, p70S6K and 4E-BP1 by accelerating adenosine monophosphate-activated kinase (AMPK) in HeLa cancer cells, but it did not affect other cell lines. To determine why the anti-proliferative effects are observed only in HeLa cells, we examined the expression level of liver kinase B1 (LKB1) since metformin and LKB1 share the same signalling system, and we found that the LKB1 gene is not expressed only in HeLa cancer cells. Consistently, the overexpression of LKB1 in HeLa cancer cells prevented metformin-triggered apoptosis while LKB1 knockdown significantly increased apoptosis in HEC-1-A and KLE cancer cells. Taken together, these findings indicate an underlying biological/physiological molecular function specifically for metformin-triggered apoptosis dependent on the presence of the LKB1 gene in tumorigenesis.

Activated Carbon-Embedded Reduced Graphene Oxide Electrodes for Capacitive Desalination

  • Tarif Ahmed;Jin Sun Cha;Chan-gyu Park;Ho Kyong Shon;Dong Suk Han;Hyunwoong Park
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.222-230
    • /
    • 2023
  • Capacitive deionization of saline water is one of the most promising water purification technologies due to its high energy efficiency and cost-effectiveness. This study synthesizes porous carbon composites composed of reduced graphene oxide (rGO) and activated carbon (AC) with various rGO/AC ratios using a facile chemical method. Surface characterization of the rGO/AC composites shows a successful chemical reduction of GO to rGO and incorporation of AC into rGO. The optimized rGO/AC composite electrode exhibits a specific capacitance of ~243 F g-1 in a 1 M NaCl solution. The galvanostatic charging-discharging test shows excellent reversible cycles, with a slight shortening in the cycle time from the ~260th to the 530th cycle. Various monovalent sodium salts (NaF, NaCl, NaBr, and NaI) and chloride salts (LiCl, NaCl, KCl, and CsCl) are deionized with the rGO/AC electrode pairs at a cell voltage of 1.3 V. Among them, NaI shows the highest specific adsorption capacity of ~22.2 mg g-1. Detailed surface characterization and electrochemical analyses are conducted.

ATG5 knockout promotes paclitaxel sensitivity in drug-resistant cells via induction of necrotic cell death

  • Hwang, Sung-Hee;Yeom, Hojin;Lee, Michael
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.3
    • /
    • pp.233-240
    • /
    • 2020
  • Autophagy regulators are often effective as potential cancer therapeutic agents. Here, we investigated paclitaxel sensitivity in cells with knockout (KO) of ATG5 gene. The ATG5 KO in multidrug resistant v-Ha-ras-transformed NIH 3T3 cells (Ras-NIH 3T3/Mdr) was generated using the CRISPR/Cas9 technology. The qPCR and LC3 immunoblot confirmed knockout of the gene and protein of ATG5, respectively. The ATG5 KO restored the sensitivity of Ras-NIH 3T3/Mdr cells to paclitaxel. Interestingly, ATG5 overexpression restored autophagy function in ATG5 KO cells, but failed to rescue paclitaxel resistance. These results raise the possibility that low level of resistance to paclitaxel in ATG5 KO cells may be related to other roles of ATG5 independent of its function in autophagy. The ATG5 KO significantly induced a G2/M arrest in cell cycle progression. Additionally, ATG5 KO caused necrosis of a high proportion of cells after paclitaxel treatment. These data suggest that the difference in sensitivity to paclitaxel between ATG5 KO and their parental MDR cells may result from the disparity in the proportions of necrotic cells in both populations. Thus, our results demonstrate that the ATG5 KO in paclitaxel resistant cells leads to a marked G2/M arrest and sensitizes cells to paclitaxel-induced necrosis.

Cytotoxic Evaluation of the Essential Oils from Korean Native Plant on Human Skin and Lung Cells

  • AHN, Changhwan;YOO, Yeong-Min;PARK, Mi-Jin;HAM, Youngseok;YANG, Jiyoon;JEUNG, Eui-Bae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.4
    • /
    • pp.371-383
    • /
    • 2021
  • Plant essential oils are used in products such as fragrances and cosmetics due to their individual aromatic characteristics. Currently, essential oils are not only used in cosmetics but also in pharmaceutical products with anti-bacterial, anti-viral, anti-fungal, anti-parasitic, insecticidal, anti-cancer, neuroprotective, psychophysiological, or anti-aging effects. Despite their pharmaceutical properties, some studies reported cytotoxic effects in high doses. Therefore, for pharmaceutical purposes, the margin of safety of essential oils needs to be examined. Herein, we evaluated the IC50 of 10 essential oil from Korean native plants: Juniperus chinensis L. var. sargentii Henry, Citrus natsudaidai Hayata, Citrus reticulata Blanco, Citrus unshiu (Yu. Tanaka ex Swingle) Marcow, Artemisia capillaris Thunb, Aster glehnii F. Schmidt, Juniperus chinensis L, Zanthoxylum schinifolium Siebold & Zucc, Zanthoxylum piperitum (L.) D, and Cinnamomum loureirii. In addition, gene regulation of the cell-cycle gene and apoptosis marker CASP3 was examined at the IC50 level. The purpose of this study was to describe the toxic concentrations of essential oils extracted from Korean native plants, thereby providing toxic concentration guidelines for inclusion in a toxicity database and in the application of plant essential oils in various fields.

Heterologous Expression of Human SLC1A5v2 as a Functional Glutamine Transporter in Escherichia coli

  • E Young Kim;Ji Won Park;Ok Bin Kim
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.1
    • /
    • pp.37-42
    • /
    • 2023
  • Neutral and non-essential amino acid, glutamine (Gln), plays an essential role in supplying nitrogen to all the amino acids and nucleotides in the mammalian body. Gln is also the most important carbon source that provides intermediates for gluconeogenesis and fatty acid synthesis and supplements the tricarboxylic acid cycle in fast-growing cancer cells. Among the known 14 Gln transporter genes, soluted carrier family 1 member 5 (SLC1A5) has been reported to be closely associated with cancer cell growth. Three variants (v1, v2, and v3) have been derived from SLC1A5. Here, we established a heterologous gene expression system for the active form of human SLC1A5 variant-2 (hSLC1A5v2) in Escherichia coli. v2 is the smallest variant that has not yet been studied. Four expression systems were investigated: pBAD, pCold, pET, and pQE. We also addressed the problem of codon usage bias. Although pCold and pET overexpressed hSLC1A5v2 in E. coli, they were functionally inactive. hSLC1A5v2 using the pBAD system was able to catalyze the successful transport of Gln, even if it was not highly expressed. Initial activity of hSLC1A5v2 for [14C] Gln uptake in E. coli reached up to 6.73 μmole·min-1·gDW-1 when the cell was induced with 80 mM L-arabinose. In this study, we demonstrated a heterologous expression system for the human membrane protein, SLC1A5, in E. coli. Our results can be used for the functional comparison of SLC1A5 variants (v1, v2, and v3) in future studies, to facilitae the developement of SLC1A5 inhibitors as effective anticancer drugs.

MicroRNAs in Human Diseases: From Cancer to Cardiovascular Disease

  • Ha, Tai-You
    • IMMUNE NETWORK
    • /
    • v.11 no.3
    • /
    • pp.135-154
    • /
    • 2011
  • The great discovery of microRNAs (miRNAs) has revolutionized current cell biology and medical science. miRNAs are small conserved non-coding RNA molecules that post-transcriptionally regulate gene expression by targeting the 3' untranslated region of specific messenger RNAs for degradation or translational repression. New members of the miRNA family are being discovered on a daily basis and emerging evidence has demonstrated that miRNAs play a major role in a wide range of developmental process including cell proliferation, cell cycle, cell differentiation, metabolism, apoptosis, developmental timing, neuronal cell fate, neuronal gene expression, brain morphogenesis, muscle differentiation and stem cell division. Moreover, a large number of studies have reported links between alterations of miRNA homeostasis and pathological conditions such as cancer, psychiatric and neurological diseases, cardiovascular disease, and autoimmune disease. Interestingly, in addition, miRNA deficiencies or excesses have been correlated with a number of clinically important diseases ranging from cancer to myocardial infarction. miRNAs can repress the gene translation of hundreds of their targets and are therefore well-positioned to target a multitude of cellular mechanisms. As a consequence of extensive participation in normal functions, it is quite logical to ask the question if abnormalities in miRNAs should have importance in human diseases. Great discoveries and rapid progress in the past few years on miRNAs provide the hope that miRNAs will in the near future have a great potential in the diagnosis and treatment of many diseases. Currently, an explosive literature has focussed on the role of miRNA in human cancer and cardiovascular disease. In this review, I briefly summarize the explosive current studies about involvement of miRNA in various human cancers and cardiovascular disease.