• Title/Summary/Keyword: Cell damage pathways

Search Result 128, Processing Time 0.026 seconds

Coiled-Coil Domain-Containing Protein 98 (CCDC98) Regulates Cyclin B1 Expression by Affecting WTAP Protein Stability (WTAP 단백질의 안정성을 통한 CCDC98 단백질의 cyclin B1 발현 조절)

  • Oh, Yun-Jung;Lee, Eun-Hee;Lee, Il-Kyu;Kim, Kyung-Soo;Kim, Hong-Tae
    • Journal of Life Science
    • /
    • v.21 no.8
    • /
    • pp.1067-1075
    • /
    • 2011
  • Coiled-coil domain-containing protein 98 (CCDC98) plays a role in G2/M DNA damage checkpoint pathways by recruiting breast cancer 1 (BRCA1)-A complex to the DNA-damaged sites. However, the molecular mechanism of CCDC98 on the DNA damage-induced G2/M checkpoint pathways is unclear. In this study, we identifed Wilms tumor 1-associating protein (WTAP) as a novel CCDC98-binding protein, using tandem affinity purification. We confirmed the association between CCDC98 and WTAP using in vivo and in vitro binding assays. We demonstrated that CCDC98 regulates cyclin B1 expression by affecting WTAP protein stability. Based on these results, we suggest that CCDC98 may act as a novel cell cycle regulator by regulating the expression level of cyclin B1.

Ataxia-Telangiectasia Mutated Is Involved in Autolysosome Formation

  • Mihwa Hwang;Dong Wha Jun;Bo Ram Song;Hanna Shim;Chang-Hun Lee;Sunshin Kim
    • Biomolecules & Therapeutics
    • /
    • v.31 no.5
    • /
    • pp.559-565
    • /
    • 2023
  • Ataxia-telangiectasia mutated (ATM), a master kinase of the DNA damage response (DDR), phosphorylates a multitude of substrates to activate signaling pathways after DNA double-strand breaks (DSBs). ATM inhibitors have been evaluated as anticancer drugs to potentiate the cytotoxicity of DNA damage-based cancer therapy. ATM is also involved in autophagy, a conserved cellular process that maintains homeostasis by degrading unnecessary proteins and dysfunctional organelles. In this study, we report that ATM inhibitors (KU-55933 and KU-60019) provoked accumulation of autophagosomes and p62 and restrained autolysosome formation. Under autophagy-inducing conditions, the ATM inhibitors caused excessive autophagosome accumulation and cell death. This new function of ATM in autophagy was also observed in numerous cell lines. Repression of ATM expression using an siRNA inhibited autophagic flux at the autolysosome formation step and induced cell death under autophagy-inducing conditions. Taken together, our results suggest that ATM is involved in autolysosome formation and that the use of ATM inhibitors in cancer therapy may be expanded.

Effect of Mild Hypothermia on the Mitogen Activated Protein Kinases in Experimental Stroke

  • Han, Hyung-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.4
    • /
    • pp.187-194
    • /
    • 2004
  • Middle cerebral artery occlusion (MCAO) results in cell death by activation of complex signal pathways for cell death and survival. Hypothermia is a robust neuroprotectant, and its effect has often been attributed to various mechanisms, but it is not yet clear. Upstream from the cell death promoters and executioners are several enzymes that may activate several transcription factors involved in cell death and survival. In this study, we immunohistochemically examined the phosphorylation of mitogen-activated protein kinase, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 kinase during early period of the ischemic injury, following 2 hours (h) of transient MCAO. Increased phosphorylation of ERK and p38 was observed in the vessels at 3 h, neuron-like cells at 6 and 12 h and glia-like cells at 12 h. Activation of JNK was not remarkable, and a few cells showed active JNK following ischemia. Phosphorylation of Elk-1, a transcription factor, was reduced by ischemic insult. Hypothermia attenuated the activation of ERK, p38 and JNK, and inhibited reduction of Elk-1. These data suggest that signals via different MAPK family members converge on the cell damage process and hypothermia protects the brain by interfering with these pathways.

Bioinformatics Analysis Reveals Significant Genes and Pathways to Targetfor Oral Squamous Cell Carcinoma

  • Jiang, Qian;Yu, You-Cheng;Ding, Xiao-Jun;Luo, Yin;Ruan, Hong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.5
    • /
    • pp.2273-2278
    • /
    • 2014
  • Purpose: The purpose of our study was to explore the molecular mechanisms in the process of oral squamous cells carcinoma (OSCC) development. Method: We downloaded the affymetrix microarray data GSE31853 and identified differentially expressed genes (DEGs) between OSCC and normal tissues. Then Gene Ontology (GO) and Protein-Protein interaction (PPI) networks analysis was conducted to investigate the DEGs at the function level. Results: A total 372 DEGs with logFCI >1 and P value < 0.05 were obtained, including NNMT, BAX, MMP9 and VEGF. The enriched GO terms mainly were associated with the nucleoplasm, response to DNA damage stimuli and DNA repair. PPI network analysis indicated that GMNN and TSPO were significant hub proteins and steroid biosynthesis and synthesis and degradation of ketone bodies were significantly dysregulated pathways. Conclusion: It is concluded that the genes and pathways identified in our work may play critical roles in OSCC development. Our data provides a comprehensive perspective to understand mechanisms underlying OSCC and the significant genes (proteins) and pathways may be targets for therapy in the future.

Src Protein Tyrosine Kinases in Stress Responses

  • Grishin, Anatoly;Corey, Seth J.
    • Animal cells and systems
    • /
    • v.6 no.1
    • /
    • pp.1-12
    • /
    • 2002
  • A role of Src family protein Tyrosine kinases (SFK) as mediators of receptor-ligand initiated responses is well established. Well documented, but less well understood is the role of SFK in cellular reaction to stresses. Evidence from the wide variety of experimental systems indicates that SFK mediate responses to all major classes of stress, including oxidation, DNA damage, mechanical impacts, and protein denaturing. SFK may be activated by stresses directly or via regulatory circuits whose identity is not yet fully understood. Depending on the cell type and the nature of activating stimulus, SFK may activate known downstream signaling cascades leading to cell survival, proliferation, cytoskeletal rearrangement, and apoptosis; the identity of these cascades is discussed. As in the case of receptor-initiated signaling, roles of individual SFK in various stress response may be redundant or non-redundant. Although signals generated by different stresses are generally transduced via distinct SFK pathways, these pathways may overlap or exhibit crosstalk. In some cell types stress-induced activation of SFK promotes survival and inhibits apoptosis, whereas the opposite may be true for other cell types. Stress responses constitute a new and rapidly developing area of SFK-mediated signaling.

Effect of low intensity pulsed ultrasound in activating the mitogen-activated protein kinase signaling pathway and inhibition inflammation cytokine synthesis in chondrocytes

  • Kim, Eun-Jung;Kim, Gye-Yeop
    • Physical Therapy Rehabilitation Science
    • /
    • v.3 no.1
    • /
    • pp.33-37
    • /
    • 2014
  • Objective: Low intensity pulsed ultrasound (LIPUS) has been shown to accelerate cell proliferation and tissue healing in both animal models and clinical trials. However, details of the clinical effects of LIPUS have not been well characterized. The aim of this study was to investigate the effect of LIPUS on mitogen-activated protein kinase (MAPK) activation in rat articular chondrocytes. Design: Cross-sectional study. Methods: Chondrocyte were cultured in six well cell culture plates for 72 hours at $37^{\circ}C$ with 5% $CO_2$, and then exposed to LIPUS at 1.5 MHz frequency and $30-mW/cm^2$ power. Changes in chondrocyte activities were evaluated in response to oxydative stress in dose-dependent (0 and 300 uM) and time-dependent (0-24 hr) manner. The cell viability were analyzed using MTT [3-(4.5-dimethylthiazol-2-yl)-2.5 diphenyltetrazolium bromide]. The expression of p38 MAPK was measured using western blotting. Results: Oxidative stress was induced in rat chondrocytes using hydrogen peroxide ($H_2O_2$). The cell viability was decreased in chondrocytes after the $H_2O_2$ dose and time-dependent treatment. The p38 MAPK phosphorylation occurred at a significantly increased rate after $H_2O_2$ treated (p<0.05). Expression of p38 MAPK was decreased in the p38 inhibitor groups compared with the oxidative stress-induced chondrocyte damage via the p38 MAPK signaling pathways (p<0.05). Conclusions: It could be concluded that LIPUS can inhibit oxidative stress-induced chondrocyte damage via the p38 MAPK signaling pathways.

Antitumor effects of valdecoxib on hypopharyngeal squamous carcinoma cells

  • Trang, Nguyen Thi Kieu;Yoo, Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.6
    • /
    • pp.439-446
    • /
    • 2022
  • The antitumoral effects of valdecoxib (Val), an United States Food and Drug Administration-approved anti-inflammatory drug that was withdrawn due to the side effects of increased risk of cardiovascular adverse events, were investigated in hypopharyngeal squamous cell carcinoma cells by performing a cell viability assay, transwell assay, immunofluorescence imaging, and Western blotting. Val markedly inhibited cell viability with an IC50 of 67.3 µM after 48 h of treatment, and also downregulated cell cycle proteins such as Cdks and their regulatory cyclin units. Cell migration and invasion were severely suppressed by inhibiting integrin α4/FAK expression. In addition, Val activated the cell cycle checkpoint CHK2 in response to excessive DNA damage, which led to the activation of caspase-3/9 and induced caspase-dependent apoptosis. Furthermore, the signaling cascades of the PI3K/AKT/mTOR and mitogen-activated protein kinase pathways were significantly inhibited by Val treatment. Taken together, our results indicate that Val can be used for the treatment of hypopharyngeal squamous cell carcinoma.

Protective Effects of Nypa fruticans Wurmb against Oxidative DNA Damage and UVB-induced DNA Damage

  • So-Yeon Han;Tae-Won Jang;Da-Yoon Lee;Seo-Yoon Park;Woo-Jin Oh;Se Chul Hong;Jae-Ho Park
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2023.04a
    • /
    • pp.54-54
    • /
    • 2023
  • Nypa fruticans Wurmb (N. fruticans) is a plant that belongs to Araceae and N. fruticans is mainly found in tropical mangrove systems. The parts (leaves, stems, and roots) of N. fruticans are traditionally used for asthma, sore throat, and liver disease. N. fruticans contains flavonoids and polyphenols, which are substances that have inhibitory effects on cancer and oxidant. In previous studies, some pharmaceutical effects of N. fruticans on melanogenesis and inflammation have been reported. The present study is conducted to investigate the effect of the ethyl acetate fraction of N. fruticans (ENF) on oxidative DNA damage and UVB-induced DNA damage. DNA damage response (DDR) pathway is important in research on cancer, apoptosis, and so on. DDR pathways are considered a crucial factor affecting the alleviation of cellular damage. ENF could reduce oxidative DNA damage derived from reactive oxygen species by the Fenton reaction. Also, ENF reduced the intensity of intracellular ROS in the live cell image by DCFDA assay. UVB is known to cause skin and cellular damage, then finally contribute to causing the formation of tumors. As for the strategies of reducing DNA damage by UVB, inhibition of p53, H2AX, and Chk2 can be important indexes to protect the human body from DNA damage. As a result of confirming the protective effect of ENF for UVB damage, MMPs significantly decreased, and the expression of apoptosis-related factors tended to decrease. In conclusion, ENF can provide protective effects against double-stranded DNA break (DSB) caused by oxidative DNA damage and UVB-induced DNA damage. These results are considered to be closely related to the protective effect against radicals based on catechin, epicatechin, and isoquercitrin contained in ENF. Based on these results, it is thought that additional mechanism studies for inhibiting cell damage are needed.

  • PDF

Endothelial cell autophagy in the context of disease development

  • Basheer Abdullah Marzoog
    • Anatomy and Cell Biology
    • /
    • v.56 no.1
    • /
    • pp.16-24
    • /
    • 2023
  • Endothelial cells (EC) are the anatomical boundaries between the intravascular and extravascular space. Damage to ECs is catastrophic and induces endothelial cell dysfunction. The pathogenesis is multifactorial and involves dysregulation in the signaling pathways, membrane lipids ratio disturbance, cell-cell adhesion disturbance, unfolded protein response, lysosomal and mitochondrial stress, autophagy dysregulation, and oxidative stress. Autophagy is a lysosomal-dependent turnover of intracellular components. Autophagy was recognized early in the pathogenesis of endothelial dysfunction. Autophagy is a remarkable patho (physiological) process in the cell homeostasis regulation including EC. Regulation of autophagy rate is disease-dependent and impaired with aging. Up-regulation of autophagy induces endothelial cell regeneration/differentiation and improves the function of impaired ones. The paper scrutinizes the molecular mechanisms and triggers of EC dysregulation and current perspectives for future therapeutic strategies by autophagy targeting.

A DNA-Damage Response Gene Expression Analysis in MCF-7 followed by γ-Radiation (MCF-7 세포주의 γ선에 의한 DNA 손상 반응 유전자 발현 양상의 분석)

  • Park Ji-Yoon;Hwang Chang-Il;Park Woong-Yang;Kim Jin-Kyu;Chai Young Gyu
    • Korean Journal of Environmental Biology
    • /
    • v.23 no.1
    • /
    • pp.21-26
    • /
    • 2005
  • Cell response to genotoxic agents is complex and involves the participation of different classes of genes including cell cycle control, DNA repair and apoptosis. In this report, we presented a approach to characterize the cellular functions associated with the altered transcript profiles of MCF-7 exposed to low-dose in vitro gamma-irradiation. We used the method of human 2.4 k cDNA microarrays containing apoptosis, cell cycle, chromatin, repair, stress and chromosome genes to analyze the differential gene expression characterization that were displayed by radiation-exposed cell, human breast carcinoma MCF-7 cell line, such as 4 Gy 4 hr, 8 Gy 4 hr, and 8 Gy 12 hr. Among these genes, 66 were up-regulated and 49 were down-regulated. Specific genes were concomitantly induced in the results. Cyclin dependent kinase 4 (Cdk4) is induced for starting the cell cycle. This regulation is required for a DNA damage­induced G1 arrest. In addition to, an apoptotic pathways gene Bcl-w was concomitantly induced. Mismatch repair protein homologue-l (hMLH1), a necessary component of DNA mismatch protein repair (MMR), in G2-M cell cycle checkpoint arrest. The present study provides new information on the molecular mechanism underlying the cell response to genotoxic stress, with relevance to basic and clinical research.