• 제목/요약/키워드: Cell damage pathways

검색결과 128건 처리시간 0.025초

Gamma-Irradiation and Doxorubicin Treatment of Normal Human Cells Cause Cell Cycle Arrest Via Different Pathways

  • Lee, Seong Min;Youn, BuHyun;Kim, Cha Soon;Kim, Chong Soon;Kang, ChulHee;Kim, Joon
    • Molecules and Cells
    • /
    • 제20권3호
    • /
    • pp.331-338
    • /
    • 2005
  • Ionizing radiation and doxorubicin both produce oxidative damage and double-strand breaks in DNA. Double-strand breaks and oxidative damage are highly toxic and cause cell cycle arrest, provoking DNA repair and apoptosis in cancer cell lines. To investigate the response of normal human cells to agents causing oxidative damage, we monitored alterations in gene expression in F65 normal human fibroblasts. Treatment with ${\gamma}$-irradiation and doxorubicin altered the expression of 23 and 68 known genes, respectively, with no genes in common. Both agents altered the expression of genes involved in cell cycle arrest, and arrested the treated cells in $G_2M$ phase 12 h after treatment. 24 h after ${\gamma}$-irradiation, the percentage of $G_1$ cells increased, whereas after doxorubicin treatment the percentage of $G_2M$ cells remained constant for 24 h. Our results suggest that F65 cells respond differently to ${\gamma}$-irradiation- and doxorubicin-induced DNA damage, probably using entirely different biochemical pathways.

New strategies for germ cell cryopreservation: Cryoinjury modulation

  • Sang-Eun Jung;Buom-Yong Ryu
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제50권4호
    • /
    • pp.213-222
    • /
    • 2023
  • Cryopreservation is an option for the preservation of pre- or post-pubertal female or male fertility. This technique not only is beneficial for human clinical applications, but also plays a crucial role in the breeding of livestock and endangered species. Unfortunately, frozen germ cells, including oocytes, sperm, embryos, and spermatogonial stem cells, are subject to cryoinjury. As a result, various cryoprotective agents and freezing techniques have been developed to mitigate this damage. Despite extensive research aimed at reducing apoptotic cell death during freezing, a low survival rate and impaired cell function are still observed after freeze-thawing. In recent decades, several cell death pathways other than apoptosis have been identified. However, the relationship between these pathways and cryoinjury is not yet fully understood, although necroptosis and autophagy appear to be linked to cryoinjury. Therefore, gaining a deeper understanding of the molecular mechanisms of cryoinjury could aid in the development of new strategies to enhance the effectiveness of the freezing of reproductive tissues. In this review, we focus on the pathways through which cryoinjury leads to cell death and propose novel approaches to enhance freezing efficacy based on signaling molecules.

Epidermal Growth Factor Receptor-Related DNA Repair and Radiation-Resistance Regulatory Mechanisms: A Mini-Review

  • Bai, Jing;Guo, Xiao-Guang;Bai, Xiao-Ping
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권10호
    • /
    • pp.4879-4881
    • /
    • 2012
  • Epidermal growth factor receptor (EGFR) overexpression is associated with resistance to chemotherapy and radiotherapy. The EGFR modulates DNA repair after radiation-induced damage through an association with the catalytic subunit of DNA protein kinase. DNA double-strand breaks (DSBs) are the most lethal type of DNA damage induced by ionizing radiation, and non-homologous end joining is the predominant pathway for repair of radiation-induced DSBs. Some cell signaling pathways that respond to normal growth factors are abnormally activated in human cancer. These pathways also invoke the cell survival mechanisms that lead to resistance to radiation. The molecular connection between the EGFR and its control over DNA repair capacity appears to be mediated by one or more signaling pathways downstream of this receptor. The purpose of this mini-review was not only to highlight the relation of the EGFR signal as a regulatory mechanism to DNA repair and radiation resistance, but also to provide clues to improving existing radiation resistance through novel therapies based on the above-mentioned mechanism.

Effects of 5-Aza-2'-Deoxycytidine, Bromodeoxyuridine, Interferons and Hydrogen Peroxide on Cellular Senescence in Cholangiocarcinoma Cells

  • Moolmuang, Benchamart;Singhirunnusorn, Pattama;Ruchirawat, Mathuros
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권3호
    • /
    • pp.957-963
    • /
    • 2016
  • Cellular senescence, a barrier to tumorigenesis, controls aberrant proliferation of cells. We here aimed to investigate cellular senescence in immortalized cholangiocyte and cholangiocarcinoma cell lines using five different inducing agents: 5-aza-2'deoxycytidine, bromodeoxyuridine, interferons ($IFN{\beta}$ and $IFN{\gamma}$), and hydrogen peroxide. We analyzed senescence characteristics, colony formation ability, expression of genes involved in cell cycling and interferon signaling pathways, and protein levels. Treatment with all five agents decreased cell proliferation and induced cellular senescence in immortalized cholangiocyte and cholangiocarcinoma cell lines with different degrees of growth-inhibitory effects depending on cell type and origin. Bromodeoxyuridine gave the strongest stimulus to inhibit growth and induce senescence in most cell lines tested. Expression of p21 and interferon related genes was upregulated in most conditions. The fact that bromodeoxyuridine had the strongest effects on growth inhibition and senescence induction implies that senescence in cholangiocarcinoma cells is likely controlled by DNA damage response pathways relating to the p53/p21 signaling. In addition, interferon signaling pathways may partly regulate this mechanism in cholangiocarcinoma cells.

UV-responsive intracellular signaling pathways: MAPK, p53, and their crosstalk

  • Matsuda, Naoki
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.229-232
    • /
    • 2002
  • There are two distinct UV-responsive signaling pathways in UV-irradiated mammalian cells, i.e., the DNA damage-dependent and -independent pathways. The former occurs in nucleus and results in growth arrest and apoptosis via post-translational modification of p53. The latter is initiated by oxidative stress and/or by damages in cell membrane or cytoplasm, which activate signaling cascade through intracellular molecules including mitogen activated protein kinases (MAPK). In normal human fibroblastic cells, all of MAPK family members, extracellular signal-related kinases (ERK), c-Jun N-terminal kinases (JNK) and p38, were rapidly phosphorylated following UV-irradiation. ERK phosphorylation was suppressed by an inhibitor of receptor tyrosine kinases (RTK). As ERK usually responds to mitogenic stimuli from RTK ligands, UV-induced ERK phosphorylation may be linked to the proliferation of survived cells. In contrast, phosphorylation of JNK and p38, as well as apoptosis, were modulated by the level of UV-generated oxidative stress Therefore, JNK and p38 may take part in oxidative stress-mediated apoptosis. Phosphorylation of p53 at Ser and Thr residues are essential for stabilization and activation of p53. Among several sites reported, we confirmed phosphorylation at Ser-15 and Ser-392 after UV-irradiation. Both of these were inhibited by a phosphoinositide 3-kinase inhibitor, presumably due to the shutdown of signals from DNA damage to p53. Phosphorylation at Ser-392 was also sensitive to an antioxidant and a p38 inhibitor, suggesting that Ser-392 of p53 is one of the possible points where DNA damage-dependent and -independent apoptic signals merge. Thus, MAPK pathway links UV-induced intracellular signals to the nuclear responses and modifies DNA damage-dependent cellular outcome, resulting in the determination of cell death.

  • PDF

Programmed Cell Death in Bacterial Community: Mechanisms of Action, Causes and Consequences

  • Lee, Heejeong;Lee, Dong Gun
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권7호
    • /
    • pp.1014-1021
    • /
    • 2019
  • In the bacterial community, unicellular organisms act together as a multicellular being. Bacteria interact within the community and programmed cell death (PCD) in prokaryotes is a sort of altruistic action that enables the whole population to thrive. Genetically, encoded cell death pathways are triggered by DNA damage or nutrient starvation. Given the environmental and bacterial diversity, different PCD mechanisms are operated. Still, their biochemical and physiological aspects remain unrevealed. There are three main pathways; thymineless death, apoptosis-like death, and toxin-antitoxin systems. The discovery of PCD in bacteria has revealed the possibility of developing new antibiotics. In this review, the molecular and physiological characteristics of the three types of PCD and their development potential as antibacterial agents are addressed.

Role of RUNX Family Transcription Factors in DNA Damage Response

  • Samarakkody, Ann Sanoji;Shin, Nah-Young;Cantor, Alan B.
    • Molecules and Cells
    • /
    • 제43권2호
    • /
    • pp.99-106
    • /
    • 2020
  • Cells are constantly exposed to endogenous and exogenous stresses that can result in DNA damage. In response, they have evolved complex pathways to maintain genomic integrity. RUNX family transcription factors (RUNX1, RUNX2, and RUNX3 in mammals) are master regulators of development and differentiation, and are frequently dysregulated in cancer. A growing body of research also implicates RUNX proteins as regulators of the DNA damage response, often acting in conjunction with the p53 and Fanconi anemia pathways. In this review, we discuss the functional role and mechanisms involved in RUNX factor mediated response to DNA damage and other cellular stresses. We highlight the impact of these new findings on our understanding of cancer predisposition associated with RUNX factor dysregulation and their implications for designing novel approaches to prevent cancer formation in affected individuals.

Triglyceride induces DNA damage leading to monocyte death by activating caspase-2 and caspase-8

  • Byung Chul Jung;Hyun-Kyung Kim;Sung Hoon Kim;Yoon Suk Kim
    • BMB Reports
    • /
    • 제56권3호
    • /
    • pp.166-171
    • /
    • 2023
  • Monocytes are peripheral leukocytes that function in innate immunity. Excessive triglyceride (TG) accumulation causes monocyte death and thus can compromise innate immunity. However, the mechanisms by which TG mediates monocyte death remain unclear to date. Thus, this study aimed to elucidate the mechanisms by which TG induces monocyte death. Results showed that TG induced monocyte death by activating caspase-3/7 and promoting poly (ADP-ribose) polymerase (PARP) cleavage. In addition, TG induced DNA damage and activated the ataxia telangiectasia mutated (ATM)/checkpoint kinase 2 and ATM-and Rad3-related (ATR)/checkpoint kinase 1 pathways, leading to the cell death. Furthermore, TG-induced DNA damage and monocyte death were mediated by caspase-2 and -8, and caspase-8 acted as an upstream molecule of caspase-2. Taken together, these results suggest that TG-induced monocyte death is mediated via the caspase-8/caspase-2/DNA damage/executioner caspase/PARP pathways.

PCNA Modifications for Regulation of Post-Replication Repair Pathways

  • Lee, Kyoo-young;Myung, Kyungjae
    • Molecules and Cells
    • /
    • 제26권1호
    • /
    • pp.5-11
    • /
    • 2008
  • Stalled DNA replication forks activate specific DNA repair mechanism called post-replication repair (PRR) pathways that simply bypass DNA damage. The bypassing of DNA damage by PRR prevents prolonged stalling of DNA replication that could result in double strand breaks (DSBs). Proliferating cell nuclear antigen (PCNA) functions to initiate and choose different bypassing pathways of PRR. In yeast, DNA replication forks stalled by DNA damage induces monoubiquitination of PCNA at K164, which is catalyzed by Rad6/Rad18 complex. PCNA monoubiquitination triggers the replacement of replicative polymerase with special translesion synthesis (TLS) polymerases that are able to replicate past DNA lesions. The PCNA interaction motif and/or the ubiquitin binding motif in most TLS polymerases seem to be important for the regulation of TLS. The TLS pathway is usually error-prone because TLS polymerases have low fidelity and no proofreading activity. PCNA can also be further polyubiquitinated by Ubc13/ Mms2/Rad5 complex, which adds an ubiquitin chain onto monoubiquitinated K164 of PCNA. PCNA polyubiquitination directs a different PRR pathway known as error-free damage avoidance, which uses the newly synthesized sister chromatid as a template to bypass DNA damage presumably through template switching mechanism. Mammalian homologues of all of the yeast PRR proteins have been identified, thus PRR is well conserved throughout evolution. Mutations of some PRR genes are associated with a higher risk for cancers in mice and human patients, strongly supporting the importance of PRR as a tumor suppressor pathway.

DNA damage repair is suppressed in porcine aged oocytes

  • Lin, Tao;Sun, Ling;Lee, Jae Eun;Kim, So Yeon;Jin, Dong Il
    • Journal of Animal Science and Technology
    • /
    • 제63권5호
    • /
    • pp.984-997
    • /
    • 2021
  • This study sought to evaluate DNA damage and repair in porcine postovulatory aged oocytes. The DNA damage response, which was assessed by H2A.X expression, increased in porcine aged oocytes over time. However, the aged oocytes exhibited a significant decrease in the expression of RAD51, which reflects the DNA damage repair capacity. Further experiments suggested that the DNA repair ability was suppressed by the downregulation of genes involved in the homologous recombination (HR) and nonhomologous end-joining (NHEJ) pathways. The expression levels of the cell cycle checkpoint genes, CHEK1 and CHEK2, were upregulated in porcine aged oocytes in response to induced DNA damage. Immunofluorescence results revealed that the expression level of H3K79me2 was significantly lower in porcine aged oocytes than in control oocytes. In addition, embryo quality was significantly reduced in aged oocytes, as assessed by measuring the cell proliferation capacity. Our results provide evidence that DNA damage is increased and the DNA repair ability is suppressed in porcine aged oocytes. These findings increase our understanding of the events that occur during postovulatory oocyte aging.