• Title/Summary/Keyword: Cell culturing

Search Result 216, Processing Time 0.028 seconds

The Experimental Study on Cryopreservation of Mouse Embryo (생쥐배아의 동결보존에 관한 실험적 연구)

  • Lee, Yu-Il;Kwon, Young-Sook;Park, Hyun-Jeong
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.28 no.1
    • /
    • pp.55-63
    • /
    • 2001
  • Objectives: This study was carried out to evaluate the effects of embryonic stage, cryoprotectant, and freezing-thawing method on the rates of survival and development of the cryopreserved mouse early embryo and finally to establish the cryopreservation method of surplus embryos obtained during assisted reproductive technology (ART). Materials and Methods: Two to eight cell embryos were obtained from oviducts of mated $F_1$ hybrid female mice superovulated by pregnant mare's serum gonadotropin (PMSG) and human chorionic gonadotropin (hCG). Two-step 1,2-propanediol (PROH), dimethylsulfoxide (DMSO) and 4-step PROH DMSO were used as cryoprotectant and dehydration and rehydration method of embryos, and slow-cooling or rapid-cooling method was used as frozen program. The survival rates of embryos were measured after thawing and rehydration, and the developmental rates of embryos were compared and observed during culturing embryos for 24, 48, 72, 96 hrs. Results: As for the survival and development rates of embryos according to embryonic stage, the survival rate of 2 cell stage in PROH and DMSO was significantly higher than 4-8 cell (64.5% versus 62.1 %,79.7% versus 73.2%) (p<0.01, p<0.01), but the development rates of 4-8 cell embryos in PROH and DMSO were significantly higher than 2 cell embryos for whole culture period (p<0.01) and the development rates of 4-8 cell embryos in PROH were significantly higher than 2 cell embryos in DMSO (p<0.01). As for the survival and development rates of embryos according to cryoprotectant, the survival rate of 2 cell embryo in DMSO was significantly higher than that in PROH (74.4% versus 64.5%) (p<0.01), whereas the development rate of embryos was not differ till 24 hrs. The developmen1 rate from morular to hatching blastocyst, however, was significantly higher in PROH than in DMSO during 48 hr (p<0.01). The survival rate of 4-8 cell embryo was 62.1% in PROH and 73.2% in DMSO. The development rates of embryo in PROH were significantly higher for whole culture periods (p<0.01, 0.05). In respect to the effect of freezing and thawing program on the survival and development rates of embryos, method of slow cooling and rapid thawing was more effective than that of rapid cooling and rapid thawing. Conclusions: The survival rate of embryo in 2 cell stage was higher than in 4-8 cell stage, and PROH appears more effective cryoprotectant than DMSO because PROH showed better development rates of embryos in 2 and 4-8 cell stage. Moreover, slow cooling and rapid thawing method was considered as the best cryopreservation program.

  • PDF

Free Radical Scavenging Activity and Ascorbate Content in Various Plant Cell Lines (다양한 식물배양세포주에서 자유라디칼 포착활성과 Ascorbate 함량)

  • AHN, Young-Ock;CHOI, Yong-Hwa;KWON, Seok-Yoon;LEE, Haeng-Soon;KIM, Suk-Won;PARK, Il-Hyun;KWAK, Sang-Soo
    • Korean Journal of Plant Tissue Culture
    • /
    • v.25 no.5
    • /
    • pp.289-293
    • /
    • 1998
  • We investigated the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity in methanol extracts of 64 cultured cell lines, which were derived from various plant species, and the ascorbate content in cell lines, which showed a high radical scavenging activity. Thirteen cell lines revealed the antioxidative activity ($IC_{50}$) by methanol extracts of less than 50 mg in cell fresh wt. Of them, six cell lines showed the same Rf value as ascorbate on the DPPH sprayed silica gel TLC. The ascorbate content in cell lines of Rosa multiflora, Scutellaria baicalensis, and Achyranthes japonica showed 48.5, 30.3, and $16.8\;\mu\textrm{g}$ per g cell fresh wt by HPLC analysis, respectively. In callus cultures of S. baicalensis, the concentration of ascorbate reached a maximun ($39{\pm}3.4\;\mu\textrm{g}/g$ cell fresh wt) on 30 days after subculture, which corresponded to the stationary growth phase, and subsequently decreased by successive culturing.

  • PDF

Inflammatory Mediators Modulate NK Cell-stimulating Activity of Dendritic Cells by Inducing Development of Polarized Effector Function

  • Kim, Kwang-Dong;Choi, Seung-Chul;Lee, Eun-Sil;Kim, Ae-Yung;Lim, Jong-Seok
    • IMMUNE NETWORK
    • /
    • v.7 no.3
    • /
    • pp.133-140
    • /
    • 2007
  • Background: It is well established that cross talk between natural killer (NK) cells and myeloid dendritic cells (DC) leads to NK cell activation and DC maturation. In the present study, we investigated whether type 1-polarized DC (DC1) matured in the presence of IFN-${\gamma}$ and type 2-polarized DC (DC2) matured in the presence of PGE2 can differentially activate NK cells. Methods: In order to generate DC, plastic adherent monocytes were cultured in RPMI 1640 containing GM-CSF and IL-4. At day 6, maturation was induced by culturing the cells for 2 days with cytokines or PGE2 in the presence or absence of LPS. Each population of DC was cocultured with NK cells for 24 h. The antigen expression on DC was analyzed by flow cytometry and cytokine production in culture supernatant was measured by ELISA or a bioassay for TNF-${\alpha}$ determination. NK cell-mediated lysis was determined using a standard 4h chromium release assay. Results: DC2, unlike DC1, had weak, if any, ability to induce NK cell activation as measured by IFN-${\gamma}$ production and cytolytic activity. DC2 were weakly stimulated by activated NK cells compared to DC1. In addition, IFN-${\gamma}$-primed mature DC appeared to be most resistant to active NK cell-mediated lysis even at a high NK cell/DC ratio. On the other hand, PGE2-primed DC were less resistant to feedback regulation by NK cells than IFN-${\gamma}$-primed mature DC. Finally, we showed that the differential effect of two types of DC population on NK cell activity is not due to differences in their ability to form conjugates with NK cells. Conclusion: These results suggest that different combinations of inflammatory mediators differentially affect the effector function of DC and, as a result, the function of NK cells, eventually leading to distinct levels of activation in adaptive immunity.

The Effects of Vero Cell Co-culture on Mouse Embryo Development (Vero Cell과의 공동배양이 체외에서 생쥐 배아발생에 미치는 영향)

  • Lee, Yoon;Park, June-Hong;Kang, He-Na;Kim, Yong-Bong;Lee, Eung-Soo;Park, Sung-Kwan
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.24 no.2
    • /
    • pp.233-239
    • /
    • 1997
  • Embryos of most mammalian species grown in vitro would undergo developmental arrest at the approximate time of genomic activation. Stage-specific cell block and the resulting rapid loss of embryo viability in conventional culture media have limited the duration for which embryos may be cultured prior to transfer. As a result, embryos are usually transferred to the uterus at the 4-to 8-cell stage to avoid the loss of viability associated with long-term in vitro culture. Early transfer has led to asynchrony of the endometrium-trophectoderm interaction at the time of implantation and a resultant reduction in the rate of implantation. To overcome these problems, a variety of co-culture systems has been devised in which embryos can develop for a longer period prior to embryo transfer. Vero cells, derived from African green monkey kidney, share a common embryologic origin with cells from the genital tract. In addition, they are potentially safe to use, since they are highly controlled for viruses and other contaminants. Therefore, co-culture using Vero cells has been widely utilized to enhance embryo viability and development, although not without controversies. We thus designed a series of experiments to demonstrate whether Vero cells do indeed enhance mouse embryo development as well as to compare the efficacy of co-culturing mouse 1-cell embryos on Vero cell monolayer in both Ham's F-10 and human tubal fluid (HTF) culture media. 1-cell stage ICR mouse embryos were cultured either in the presence of Vero cells (Group A) or in conventional culture medium alone (Group B). In Ham's F-10 significantly more 3-to-8cell embryos developed in group A than group B (59.8 versus 10.0%; p<0.01). In contrast, there was no significant difference in embryonic development both group A and group B in HTF. However, significant differences were noted only in later embryonic stage (13 and 0%; p<0.05 of group A and B respectively, hatching or hatched). In Ham's F-10, we also could observe the beneficial effect of Vero cell on hatching process (70.7 and 42.1%; p<0.05 of group A and group B respectively).

  • PDF

Mesenchymal Stem Cell Lines Isolated by Different Isolation Methods Show Variations in the Regulation of Graft-versus-host Disease

  • Yoo, Hyun Seung;Yi, TacGhee;Cho, Yun Kyoung;Kim, Woo Cheol;Song, Sun U.;Jeon, Myung-Shin
    • IMMUNE NETWORK
    • /
    • v.13 no.4
    • /
    • pp.133-140
    • /
    • 2013
  • Since the discovery of the immunomodulation property of mesenchymal stem cells (MSCs) about a decade ago, it has been extensively investigated whether MSCs can be used for the treatment of immune-related diseases, such as graft versus-host disease (GvHD). However, how to evaluate the efficacy of human MSCs for the clinical trial is still unclear. We used an MHC-mismatched model of GvHD (B6 into BALB/c). Surprisingly, the administration of the human MSCs (hMSCs) could reduce the GvHD-related mortality of the mouse recipients and xenogeneically inhibit mouse T-cell proliferation and $IFN-{\gamma}$ production in vitro. We recently established a new protocol for the isolation of a homogeneous population of MSCs called subfractionation culturing methods (SCM), and established a library of clonal MSC lines. Therefore, we also investigated whether MSCs isolated by the conventional gradient centrifugation method (GCM) and SCM show different efficacy in vivo. Intriguingly, clonal hMSCs (hcMSCs) isolated by SCM showed better efficacy than hMSCs isolated by GCM. Based on these results, the MHC-mismatched model of GvHD may be useful for evaluating the efficacy of human MSCs before the clinical trial. The results of this study suggest that different MSC lines may show different efficacy in vivo and in vitro.

THE STUDY ON TISSUE CULTURED WILD MOUNTAIN GINSENG(Panax Ginseng C.A. Meyer) ADVENTITIOUS ROOTS EXTRACT AS A COSMETIC INGREDIENT

  • Jung, Eun-Joo;Park, Jong-Wan;Kim, Joong-Hoi;Paek, Kee-Yoeup
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.611-616
    • /
    • 2003
  • Korean ginseng(Panax Ginseng C.A. Meyer) known as a oriental miracle drug is an important medicinal plant. Ginseng has been used for geriatric, tonic, stomachic, and aphrodisiac treatments for thousands years. Also, it is an antibiotic and has therapeutic properties against stress and cancer. Ginseng is widely distributed all over the world. Among them, Korean mountain ginseng has the most valuable effect on pharmaceuticals. The roots of mountain ginseng contained several kinds of ginsenosides that have many active functions for the human body. However, the study of mountain ginseng has a limit because the mountain ginseng is very expensive and rare. So, we artificially cultured mountain ginseng adventitious roots using the bioreactor culture system. We induced callus from original mountain ginseng, directly dug up in mountain and aged about one hundred ten years. Separated adventitious roots were precultured in 500ml conical flasks and then, transferred in 20L bioreactors. The adventitious roots of mountain ginseng were harvested after culturing for 40days, dried and then, extracted with several solvents. In this study, we investigated the whitening effect, anti-wrinkle effect and the safety of tissue cultured adventitious roots extract of mountain ginseng in order to identify the merit as a cosmetic ingredient. Particularly, extract of mountain ginseng adventitious roots showed whitening and anti-wrinkle effects. The inhibitory effect of this extract on the melanogenesis was examined using B-16 melanoma cell. When B-16 melanoma cells were cultured with adventitious root extract, there was a dramatically decrease in melanin contents of 8-16 melanoma cell. And we identified this extract inhibited Dopa auto-oxidation significantly. Also, when transformed mouse fibroblast L929 cells were treated with this extract, there was a significant increase in collagen synthesis. The results show significant inhibited melanization and wrinkle without inhibiting cell viability.

  • PDF

Construction of 3D Culture Medium with Elastin-like Polypeptide (ELP) Hydrogel for Human Pluripotent Stem Cells

  • Lee, Jonghwan;Rhee, Ki-Jong;Jung, Donjgu
    • Biomedical Science Letters
    • /
    • v.19 no.1
    • /
    • pp.41-47
    • /
    • 2013
  • Pluripotent stem cells (PSCs) have lots of potential in biomedical sciences owing to its potential to differentiate into any kind of cells in the body. However, it is still a challenge to culture PSCs on a large scale for application to regenerative medicine. Herein, we introduce a synthetic polymer that enables large-scale suspension culture of human PSCs. By employing suspension culture, it became unnecessary to use conventional substrata such as mouse embryonic fibroblast (MEF) or Matrigel$^{TM}$, which are believed to be main causative sources of xenogeneic contamination in cultured human PSCs in vitro. Human PSCs were cultured in the medium in which elastin-like polypeptide (ELP) dissolved. The ELP in the medium became harden as temperature increases by transforming the medium into a semi-solid gel that supported growth of human PSCs in suspension. Gel-sol transition temperature of ELP can be adjusted by modifying the peptide sequence in which 5 amino acids, Val-Pro-Gly-Xaa-Gly, repeated sequentially. We constructed 3D suspension media having transition temperature around $33{\sim}35^{\circ}C$ using an ELP consisted of 40, 60, or 80 repeats of a monomer, which was Val-Pro-Gly-Val-Gly. Among the ELPs, ELP80 was chosen as the best ELP to support growth of human PSCs in suspension culture. This result suggests that the ELP80 can be a medium component for culturing human PSCs in large-scale.

New Isolation Technique and Culture System for Clinical Applications of Human Amniotic Epithelial Stem Cells (인간태반양막유래 상피줄기세포의 임상적용을 위한 새로운 세포분리 및 배양 기술)

  • Woo, Sang-Kyu;Jo, Jung-Yoon;Shin, Il-Seob;Kang, Sung-Keun;Ra, Jeong-Chan
    • Development and Reproduction
    • /
    • v.13 no.4
    • /
    • pp.271-280
    • /
    • 2009
  • Human placenta is abundant source of adult stem cells. Especially, amniotic epithelial cells have stem cell characteristics, expressing surface markers normally present on embryonic stem cells and germ cells. However, culturing and expanding amniotic epithelial cells in vitro without feeder cells are difficult due to endogenous characteristics of epithelial cells. In the present study, amniotic epithelial cells are isolated and proliferated in several passages by applying dithiothreitol and a Rho-associated kinase inhibitor in culture media. The cultured amniotic epithelial cells showed the epithelial and stem cell characteristics. In conclusion, human placenta-derived amniotic epithelial stem cells can be a major source of stem cells for medical treatment of various diseases without any controversial issues.

  • PDF

Allogeneic clonal mesenchymal stem cell therapy for refractory graft-versus-host disease to standard treatment: a phase I study

  • Yi, Hyeon Gyu;Yahng, Seung-Ah;Kim, Inho;Lee, Je-Hwan;Min, Chang-Ki;Kim, Jun Hyung;Kim, Chul Soo;Song, Sun U.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.1
    • /
    • pp.63-67
    • /
    • 2016
  • Severe graft-versus-host disease (GVHD) is an often lethal complication of allogeneic hematopoietic stem cell transplantation (HSCT). The safety of clinical-grade mesenchymal stem cells (MSCs) has been validated, but mixed results have been obtained due to heterogeneity of the MSCs. In this phase I study, the safety of bone marrow-derived homogeneous clonal MSCs (cMSCs) isolated by a new subfractionation culturing method was evaluated. cMSCs were produced in a GMP facility and intravenously administered to patients who had refractory GVHD to standard treatment resulting after allogeneic HSCT for hematologic malignancies. After administration of a single dose ($1{\times}10^6cells/kg$), 11 patients were evaluated for cMSC treatment safety and efficacy. During the trial, nine patients had 85 total adverse events and the rate of serious adverse events was 27.3% (3/11 patients). The only one adverse drug reaction related to cMSC administration was grade 2 myalgia in one patient. Treatment response was observed in four patients: one with acute GVHD (partial response) and three with chronic GVHD. The other chronic patients maintained stable disease during the observation period. This study demonstrates single cMSC infusion to have an acceptable safety profile and promising efficacy, suggesting that we can proceed with the next stage of the clinical trial.

In vitro characterization of human dental pulp stem cells isolated by three different methods

  • Jang, Ji-Hyun;Lee, Hyeon-Woo;Cho, Kyu Min;Shin, Hee-Woong;Kang, Mo Kwan;Park, Sang Hyuk;Kim, Euiseong
    • Restorative Dentistry and Endodontics
    • /
    • v.41 no.4
    • /
    • pp.283-295
    • /
    • 2016
  • Objectives: In this study, we characterized human dental pulp cells (HDPCs) obtained by different culture methods to establish the most suitable methodology for dental tissue engineering and regenerative endodontic applications. Materials and Methods: HDPCs were isolated by the outgrowth method (HDPCs-OG), the enzymatic digestion method (collagenase/dispase/trypsin, HDPCs-ED), or the combination of both methods (HDPCs-Combined). The expression of mesenchymal stem cell markers (CD105, CD90, and CD73) was investigated. In vitro differentiation capacities of HDPCs into adipogenic, osteogenic, and chondrogenic lineages were compared. Differentiation markers were analyzed by quantitative reverse-transcription polymerase chain reaction (RT-PCR) and western blotting. Results: Our data indicated that whole HDPCs-ED, HPDCs-OG, and HDPCs-Combined could be differentiated into adipogenic, chrondrogenic, and osteogenic cell types. However, we found that the methods for isolating and culturing HDPCs influence the differentiation capacities of cells. HDPCs-OG and HDPCs-ED were preferably differentiated into adipogenic and osteogenic cells, respectively. Differentiation markers shown by RT-PCR and western blotting analysis were mostly upregulated in the treated groups compared with the control groups. Conclusions: Our findings confirmed that cell populations formed by two different culture methods and the combined culture method exhibited different properties. The results of this study could provide an insight into regenerative endodontic treatment using HDPCs.