• Title/Summary/Keyword: Cell clusters

Search Result 296, Processing Time 0.028 seconds

Fruit Characteristics of Gaeryangmeoru Grapes According to Gibberellic Acid and Thidiazuron Treatments (Gibberellic acid와 thidiazuron 처리에 의한 개량머루의 과실 특성)

  • Kwon, YongHee
    • Journal of Bio-Environment Control
    • /
    • v.23 no.2
    • /
    • pp.77-82
    • /
    • 2014
  • The present study was conducted to establish an effect and a proper concentration for treatment with gibberellic acid ($GA_3$) and thidiazuron (TDZ), resulting with increase berry size and yield in Gaeryangmeoru grapes. Berry size was increased by treatment with $GA_3$, and the fruit clusters obtained for the groups treated with $GA_3$ concentrations of 100 and $200mg{\cdot}L^{-1}$ were bigger. The berry number was also enhanced in $GA_3$ treated groups, but the soluble solid content and acidity was not significantly different. Damage caused by $GA_3$ treatment, such as peel pollination and berry shatter, was observed in the group with $200mg{\cdot}L^{-1}$. The berry size was larger in group treated with a high concentration of $GA_3$ and TDZ respectively than in those treated with low concentrations in the treatment mixed $GA_3$ and TDZ; however, fruit with low soluble solid content and high acidity was harvested after $GA_3$ and TDZ treatment due to delay of berry ripening. The pericarp tissue layers were not changed, but the distance from the epidermis layer to vascular bundle tissue was increased as a result of $GA_3$ and TDZ treatment. Therefore, $GA_3$ and TDZ did not affect an cell division but not cell size, resulting in an enlarged berry size. It is necessary to treat plant growth regulators 2~3 times and immediately after berry set to enhance berry set rate, because the period of berry set is short. This study suggests that the proper concentration for enhancing berry size and set were up to $100mg{\cdot}L^1$ $GA_3$ or $50mg{\cdot}L^{-1}GA_3+1.25mg{\cdot}L^{-1}$ TDZ, and it is necessary to pay attention to harvest mature fruits because of the delay of ripening caused by the usage of TDZ.

Three Crystal Structures of Dehydrated $Ag_{12-x}Na_x-A$ (x = 4, 6, and 8) Treated with Rubidium Vapor (탈수한 $Ag_{12-x}Na_x-A$ (x = 4, 6, 및 8)를 루비듐 증기로 처리한 세가지 결정구조)

  • Lee, Hyeon Do;Kim, Un Sik;Park, Jong Yeol;Kim, Yang
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.3
    • /
    • pp.186-196
    • /
    • 1994
  • Three fully dehydrated partially $Ag^+$-exchanged zeolite A(Ag_4Na_8-A, Ag_6Na_6-A, and Ag_8Na_4-A) were treated at $250^{\circ}C$ with 0.1 torr Rb vapor at 4 h. Their structures were determined by singlecrystal X-ray diffraction methods in the cubic space group $Pm{\bar3}m$ (a = 12.264(4) $\AA$, a = 12.269(1) $\AA$, and a= 12.332(3) $\AA$, respectively) at $22(1)^{\circ}C$, and were refined to the final error indices, R(weighed), of 0.056 with 131 reflections, 0.068 with 108 reflections, and 0.070 with 94 reflections, respectively, for which I > $3\sigma(I).$ In these structures, Rb species are found at three different crystallographic sites; three $Rb^+$ ions per unit cell are located at 8-ring centers, ca. 6.0∼6.8 $Rb^+$ ions are found opposite 6-rings on threefold axes in the large cavity, and ca. 2.5 $Rb^+$ ions are found on three fold axes in the sodalite unit. Also, Ag species are found at two different crystallographic sites; ca. 0.6∼1.0 $Ag^+$ ion lies opposite 4-rings and about 1.8∼4.2 Ag atoms are located near the center of the large cavity. In these structures, the numbers of Ag atoms per unit cell are 1.8, 3.0, and 4.2, respectively, and these are likely to form hexasilver clusters at the centers of the large cavities. The $Rb^+$ ions, by blocking 8-rings, may have prevented silver atoms from migrating out of the structure. Each hexasilver cluster is stabilized by coordination to 6-ring, 8-ring $Rb^+$ ions, and also by coordination to a 4-ring $Ag^+$ ion.

  • PDF

Two Crystal Structures of the Vacuum-Dehydrated Fully $Ag^+$-Exchanged Zeolite X ($Ag^+$ 이온으로 완전히 치환되고 탈수된 두개의 제올라이트 X의 결정구조)

  • Jang, Se Bok;Park, Sang Yun;Song, Seong Hwan;Jeong, Mi Suk;Kim, Yang
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.7
    • /
    • pp.474-482
    • /
    • 1996
  • Two crystal structures of the vacuum dehydrated $Ag^+$-exchanged zeolite X have been determined by single-crystal X-ray diffraction techniques in the cubic space group Fd3 at 21(1)$^{\circ}C$ (a=24.922(1)${\AA}$ and a=24.901(1)${\AA}$, respectively). Each crystal was ion exchanged in flowing streams of aqueous $AgNO_3$ for three days. The first crystal was dehydrated at 300$^{\circ}C$ and $2{\times}10^{-6$torr for two days. The second crystal was similarly dehydrated at 350$^{\circ}C$. Their structures were refined to the final error indices, $R_1=0.095\;and\;R_2=0.092$ with 227 reflections, and $R_1=0.096\;and\;R_2=0.087$ with 334 reflections, respectively, for which I > 3${\sigma}$(I). In the first crystal, Ag species are found at five different crystallographic sites: sixteen $Ag^+$ ions fill the site I, the center of the double 6-ring, thirty-two Ag0 atoms fill the I' site in the sodalite cavities opposite double six-rings, seventeen $Ag^+$ ions lie at the 32-fold site II' inside the sodalite cavity at the single six-oxygen ring in the supercage, fifteen Ag+ ions lie at the 32-fold site II, in the supercage, and the remaining twelve $Ag^+$ ions lie at site III' in the supercage at a little off two-fold axes. In the second crystal, all Ag species are located similarly as crystal 1; 16 at site I, 28 at site I', 16 at site II, 16 at site II', 6 at site III and 6 at site III'. Total 88 silver species were found per unit cell. The remaining four Ag atoms were migrated out of the zeolite framework to form small silver crystallites on the surface of the zeolite single crystal. In the first structure, the numbers of Ag atoms per unit cell are approximately 32.0 and these may form tetrahedral $Ag_4$ clusters at the centers of the sodalite cavities. The probable four-atom cluster is stabilized by coordination to two $Ag^+$ ions. The Ag-Ag distance in the cluster, ca. 3.05 ${\AA}$, is a little longer than 2.89 ${\AA}$, Ag-Ag distance in silver metal. At least two six-ring $Ag^+$ ions on sodalite cavity (site II') must necessarily approach this cluster and this cluster may be viewed as a distorted octahedral silver cluster, (Ag6)2+.

  • PDF

Brief Introduction of Research Progresses in Control and Biocontrol of Clubroot Disease in China

  • He, Yueqiu;Wu, Yixin;He, Pengfei;Li, Xinyu
    • 한국균학회소식:학술대회논문집
    • /
    • 2015.05a
    • /
    • pp.45-46
    • /
    • 2015
  • Clubroot disease of crucifers has occurred since 1957. It has spread to the whole China, especially in the southwest and nourtheast where it causes 30-80% loss in some fields. The disease has being expanded in the recent years as seeds are imported and the floating seedling system practices. For its effective control, the Ministry of Agriculture of China set up a program in 2010 and a research team led by Dr. Yueqiu HE, Yunnan Agricultural University. The team includes 20 main reseachers of 11 universities and 5 institutions. After 5 years, the team has made a lot of progresses in disease occurrence regulation, resources collection, resistance identification and breeding, biological agent exploration, formulation, chemicals evaluation, and control strategy. About 1200 collections of local and commercial crucifers were identified in the field and by artificiall inoculation in the laboratories, 10 resistant cultivars were breeded including 7 Chinese cabbages and 3 cabbages. More than 800 antagostic strains were isolated including bacteria, stretomyces and fungi. Around 100 chemicals were evaluated in the field and greenhouse based on its control effect, among them, 6 showed high control effect, especially fluazinam and cyazofamid could control about 80% the disease. However, fluzinam has negative effect on soil microbes. Clubroot disease could not be controlled by bioagents and chemicals once when the pathogen Plasmodiophora brassicae infected its hosts and set up the parasitic relationship. We found the earlier the pathogent infected its host, the severer the disease was. Therefore, early control was the most effective. For Chinese cabbage, all controlling measures should be taken in the early 30 days because the new infection could not cause severe symptom after 30 days of seeding. For example, a biocontrol agent, Bacillus subtilis Strain XF-1 could control the disease 70%-85% averagely when it mixed with seedling substrate and was drenching 3 times after transplanting, i.e. immediately, 7 days, 14 days. XF-1 has been deeply researched in control mechanisms, its genome, and development and application of biocontrol formulate. It could produce antagonistic protein, enzyme, antibiotics and IAA, which promoted rhizogenesis and growth. Its The genome was sequenced by Illumina/Solexa Genome Analyzer to assembled into 20 scaffolds then the gaps between scaffolds were filled by long fragment PCR amplification to obtain complet genmone with 4,061,186 bp in size. The whole genome was found to have 43.8% GC, 108 tandem repeats with an average of 2.65 copies and 84 transposons. The CDSs were predicted as 3,853 in which 112 CDSs were predicted to secondary metabolite biosynthesis, transport and catabolism. Among those, five NRPS/PKS giant gene clusters being responsible for the biosynthesis of polyketide (pksABCDEFHJLMNRS in size 72.9 kb), surfactin(srfABCD, 26.148 kb, bacilysin(bacABCDE 5.903 kb), bacillibactin(dhbABCEF, 11.774 kb) and fengycin(ppsABCDE, 37.799 kb) have high homolgous to fuction confirmed biosynthesis gene in other strain. Moreover, there are many of key regulatory genes for secondary metabolites from XF-1, such as comABPQKX Z, degQ, sfp, yczE, degU, ycxABCD and ywfG. were also predicted. Therefore, XF-1 has potential of biosynthesis for secondary metabolites surfactin, fengycin, bacillibactin, bacilysin and Bacillaene. Thirty two compounds were detected from cell extracts of XF-1 by MALDI-TOF-MS, including one Macrolactin (m/z 441.06), two fusaricidin (m/z 850.493 and 968.515), one circulocin (m/z 852.509), nine surfactin (m/z 1044.656~1102.652), five iturin (m/z 1096.631~1150.57) and forty fengycin (m/z 1449.79~1543.805). The top three compositions types (contening 56.67% of total extract) are surfactin, iturin and fengycin, in which the most abundant is the surfactin type composition 30.37% of total extract and in second place is the fengycin with 23.28% content with rich diversity of chemical structure, and the smallest one is the iturin with 3.02% content. Moreover, the same main compositions were detected in Bacillus sp.355 which is also a good effects biocontol bacterial for controlling the clubroot of crucifer. Wherefore those compounds surfactin, iturin and fengycin maybe the main active compositions of XF-1 against P. brassicae. Twenty one fengycin type compounds were evaluate by LC-ESI-MS/MS with antifungal activities, including fengycin A $C_{16{\sim}C19}$, fengycin B $C_{14{\sim}C17}$, fengycin C $C_{15{\sim}C18}$, fengycin D $C_{15{\sim}C18}$ and fengycin S $C_{15{\sim}C18}$. Furthermore, one novel compound was identified as Dehydroxyfengycin $C_{17}$ according its MS, 1D and 2D NMR spectral data, which molecular weight is 1488.8480 Da and formula $C_{75}H_{116}N_{12}O_{19}$. The fengycin type compounds (FTCPs $250{\mu}g/mL$) were used to treat the resting spores of P. brassicae ($10^7/mL$) by detecting leakage of the cytoplasm components and cell destruction. After 12 h treatment, the absorbencies at 260 nm (A260) and at 280 nm (A280) increased gradually to approaching the maximum of absorbance, accompanying the collapse of P. brassicae resting spores, and nearly no complete cells were observed at 24 h treatment. The results suggested that the cells could be lyzed by the FTCPs of XF-1, and the diversity of FTCPs was mainly attributed to a mechanism of clubroot disease biocontrol. In the five selected medium MOLP, PSA, LB, Landy and LD, the most suitable for growth of strain medium is MOLP, and the least for strains longevity is the Landy sucrose medium. However, the lipopeptide highest yield is in Landy sucrose medium. The lipopeptides in five medium were analyzed with HPLC, and the results showed that lipopeptides component were same, while their contents from B. subtilis XF-1 fermented in five medium were different. We found that it is the lipopeptides content but ingredients of XF-1 could be impacted by medium and lacking of nutrition seems promoting lipopeptides secretion from XF-1. The volatile components with inhibition fungal Cylindrocarpon spp. activity which were collect in sealed vesel were detected with metheds of HS-SPME-GC-MS in eight biocontrol Bacillus species and four positive mutant strains of XF-1 mutagenized with chemical mutagens, respectively. They have same main volatile components including pyrazine, aldehydes, oxazolidinone and sulfide which are composed of 91.62% in XF-1, in which, the most abundant is the pyrazine type composition with 47.03%, and in second place is the aldehydes with 23.84%, and the third place is oxazolidinone with 15.68%, and the smallest ones is the sulfide with 5.07%.

  • PDF

Structural Study of Selenium Sorption Complex of Fully Dehydrated, Partially Ca2+-exchanged Zeolite A (완전히 탈수되고 부분적으로 칼슘 이온으로 교환된 제올라이트 A의 셀레늄 수착 화합물의 구조 연구)

  • Kim, Hu Sik;Park, Jong Sam;Lim, Woo Taik
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.3
    • /
    • pp.251-258
    • /
    • 2020
  • Single crystal of fully dehydrated and partially Ca2+-exchanged zeolites A (|Ca4Na4|[Si12Al12O48]-LTA) was brought into contact with Se in fine pyrex capillary at 523 K for 5 days. Crystal structure of Se-sorbed |Ca4Na4|[Si12Al12O48]-LTA has been determined by single-crystal X-ray diffraction techniques at 294 K in the cubic space group $Pm{\bar{3}}m$ (a = 12.2787(13) Å). The crystal structure of yellow |Ca4Na4Se4|[Si12Al12O48]-LTA has been refined to the final error indices of R1/wR2 = 0.0960/0.3483 with 327 reflections for which Fo > 4s(Fo). In this structure, 4 Na+ and 4 Ca2+ ions fill every 6-ring site: These ions are all found at three crystallographic positions, on 3-fold axes equipoints of opposite 6-rings. Selenium atoms are found at three crystallographically distinct positions: 2 Se atoms per unit cell at Se(1) are located opposite 6-rings in the sodalite cavity (Se(1)-Na(1) = 2.53(5) Å) and 1 at Se(2) opposite 4-rings (Se(2)-O(1) = 2.76(10) Å) and 1 at Se(3) opposite 6-rings in the large cavity (Se(3)-Na(1) = 2.48(5) Å). Two molecular of Se2 (Se(1)-Se(1) = 2.37(7) or 2.90(8) Å and Se(2)-Se(3) = 2.91(5) ) Å) are found in all sodalite cavity and large cavity. Other clusters such as Se4 and Se8 could be existed in large cavity. The inter-selenium distances turned out to be longer that of gases Se2 molecule.

Metabolic Discrimination of Papaya (Carica papaya L.) Leaves Depending on Growth Temperature Using Multivariate Analysis of FT-IR Spectroscopy Data (FT-IR 스펙트럼 다변량통계분석을 이용한 파파야(Carica papaya L.)의 생육온도 변화에 따른 대사체 수준 식별)

  • Jung, Young Bin;Kim, Chun Hwan;Lim, Chan Kyu;Kim, Sung Chel;Song, Kwan Jeong;Song, Seung Yeob
    • Journal of the Korean Society of International Agriculture
    • /
    • v.31 no.4
    • /
    • pp.378-383
    • /
    • 2019
  • To determine whether FT-IR spectral analysis based on multivariate analysis for whole cell extracts can be used to discriminate papaya at metabolic level. FT-IR spectral data from leaves were analyzed by principal component analysis (PCA), partial least square discriminant analysis (PLS-DA) and hierarchical clustering analysis (HCA). FT-IR spectra confirmed typical spectral differences between the frequency regions of 1,700-1,500, 1,500-1,300 and 1,100-950 cm-1, respectively. These spectral regions were reflecting the quantitative and qualitative variations of amide I, II from amino acids and proteins (1,700-1,500 cm-1), phosphodiester groups from nucleic acid and phospholipid (1,500-1,300 cm-1) and carbohydrate compounds (1,100-950 cm-1). The result of PCA analysis showed that papaya leaves could be separated into clusters depending on different growth temperature. In this case, showed discrimination confirmed according to metabolite content of growth condition from papaya. And PLS-DA analysis also showed more clear discrimination pattern than PCA result. Furthermore, these metabolic discrimination systems could be applied for rapid selection and classification of useful papaya cultivars.