• Title/Summary/Keyword: Cell behavior

Search Result 1,385, Processing Time 0.024 seconds

Finite Element Analysis of Fuel Cell Stack with Orthotropic Material Model (직교이방성 연료전지 스택의 유한요소 해석)

  • 전지훈;황운봉;조규택;김수환;임태원
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.175-178
    • /
    • 2003
  • Mechanical behavior of a fuel stack was studied by the orthotropic material model. The fuel stack is mainly composed of bipolar plate (BP), gasket, end plate, membrane electrolyte assembly (MEA), and gas diffusion layer (GDL). Each component is fastened with a suitable pressure. It is very important to maintain a suitable contact pressure of BP, because it affects the efficiency of the fuel cell. This study compared mechanical behavior of various fastening types of the fuel cell stack. Bar, band, and modified band fastening type are used. The band fastening type showed that it reduces total volume of the cell, but it does not improve the contact pressure distribution of each BP. The modified band fastening type was designed by considering the deformations of band fastening type, and it showed a good enhancement of contact pressure distribution.

  • PDF

A Study on the Dynamic Performance Behavior of Solid Oxide Fuel Cells with Stepwise Load Changes (갑작스런 부하 변동에 따른 고체산화물 연료전지의 동적 성능 거동 특성에 관한 연구)

  • Sohn Jeong Lak;Ro Sung Tack;Yang Jin Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.4 s.235
    • /
    • pp.477-484
    • /
    • 2005
  • Model fer the dynamic simulation of dynamic behaviors of a solid oxide fuel cell (SOFC) is provided. This model is based upon (1) coupled mass and heat transfer characteristics and (2) important chemical reactions such as electrochemical and reforming reactions in high temperature fuel cells such as SOFC. It is found that the thermal inertia of solid materials in SOFC plays an important role to the dynamic behavior of cell temperature. Dynamic characteristics of cell voltage, power, and chemical compositions with different levels of load change are investigated.

Effect of the polymer wall boundary condition on the dynamic and memory behavior of the ferroelectric liquid crystal

  • Lee, Ji-Hoon;Lim, Tong-Kun;Park, Seo-Kyu;Kwon, Soon-Bum
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1132-1134
    • /
    • 2006
  • In this research, we examined the correlation between the polymer wall boundary condition and the dynamic/ memory behavior of the ferroelectric liquid crystal (FLC) molecules. It was shown that the polymer wall perpendicular to the rubbing direction induces asymmetric switching to the rubbing direction and induce smaller cone angle angle of LC. On the contrary, in the cell with polymer wall parallel to the rubbing direction, the FLC molecules are oriented in the rubbing direction and shows symmetric switching and has larger cone angle. Memory behavior of each cell has strong correlation with the dynamic state of the FLC molecules. Response time of each cell was also examined.

  • PDF

A Study on the Initial Performance Degradation of Hydrogen-Fueled Ceramic Fuel Cell with Atomic Layer-Deposited Thin-Film Electrolyte (수소연료를 이용하는 원자층증착 박막전해질 세라믹연료전지의 초기성능 저하에 관한 연구)

  • JI, SANGHOON
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.5
    • /
    • pp.410-416
    • /
    • 2021
  • The initial electrochemical performance of ceramic fuel cell with thin-film electrolyte was evaluated in terms of peak power density ratio, open circuit voltage ratio, and activation/ohmic resistance ratios at 500℃. Hydrogen and air were used as anode fuel and cathode fuel, respectively. The peak power density ratio reduced as ~17% for 40 minutes, which rapidly decreased in the early stage of the performance evaluation but gradually decreased. The open circuit voltage ratio decreased with respect time; however, its time behavior was remarkably different with the reduction behavior of the peak power density ratio. The activation resistance ratio increased as ~15% for 40 minutes, which was almost similar with the time behavior of the peak power density ratio.

Initial Performance Degradation of Hydrogen-Fueled Ceramic Fuel Cell with Plasma-Enhanced Atomic Layer-Deposited Ultra-Thin Electrolyte (플라즈마 원자층증착 초박막전해질 수소 세라믹연료전지의 초기성능 저하)

  • JI, SANGHOON
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.5
    • /
    • pp.340-346
    • /
    • 2021
  • The initial electrochemical performance of ceramic fuel cell with thin-film electrolyte fabricated by plasma-enhanced atomic layer deposition method was evaluated in terms of peak power density ratio, open circuit voltage ratio, and activation/ohmic resistance ratios at 500℃. Hydrogen and air were used as anode fuel and cathode fuel, respectively. The peak power density ratio reduced as ~52% for 30 min, which continually decreased as time increased but degradation rate gradually decreased. The open circuit voltage ratio decreased with respect time; however, its behavior was evidently different from the reduction behavior of the peak power density. The activation resistance ratio increased as ~127% for 30 min, which was almost similar with the reduction behavior of the peak power density ratio.

Investigation of Water Droplet Behaviour on GDL Surface and in the Air Flow Channel of a PEM Fuel Cell under Flooding Conditions (플러딩 조건 하에서의 고분자전해질형 연료전지 GDL 표면과 공기극 유로 채널에서의 물방울 유동 특성 고찰)

  • kim, Hansang;Min, Kyoungdoug
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.5
    • /
    • pp.476-483
    • /
    • 2012
  • Proper water management is crucial for the efficient operation of polymer electrolyte membrane (PEM) fuel cell. Especially, for automotive applications, A novel water management that can avoid both membrane dry-out and flooding is a very important task to achieve good performance and efficiency of PEM fuel cells. The aim of this study is to investigate the liquid water behavior on the gas diffusion layer (GDL) surface and in the cathode flow channel of a PEM unit fuel cell under flooding conditions. For this purpose, a transparent unit fuel cell is devised and fabricated by modifying the conventional PEM fuel cell design. The results of water droplet behavior under flooding conditions are mainly presented. The water distributions in the cathode flow channels with cell operating voltage are also compared and analyzed. Through this work, it is expected that the data obtained from this fundamental study can be effectively used to establish the basic water management strategy in terms of water removal from the flow channels in a PEM fuel cell stack.

Buckling behavior of intermediate filaments based on Euler Bernoulli and Timoshenko beam theories

  • Muhammad Taj;Muzamal Hussain;Mohamed A. Khadimallah;Muhammad Safeer;S.R. Mahmoud;Zafer Iqbal;Mohamed R. Ali;Aqib Majeed;Abdelouahed Tounsi;Manzoor Ahmad
    • Advances in concrete construction
    • /
    • v.15 no.3
    • /
    • pp.171-178
    • /
    • 2023
  • Cytoskeleton components play key role in maintaining cell structure and in giving shape to the cell. These components include microtubules, microfilaments and intermediate filaments. Among these filaments intermediate filaments are the most rigid and bear large compressive force. Actually, these filaments are surrounded by other filaments like microtubules and microfilaments. This network of filaments makes a layer as a surface on intermediate filaments that have great impact on buckling behavior of intermediate filaments. In the present article, buckling behavior of intermediate filaments is studied by taking into account the effects of surface by using Euler Bernoulli and Timoshenko beam theories. It is found that effects of surface greatly affect the critical buckling force of intermediate filaments. Further, it is observed that the critical buckling force is inversely proportional to the length of filament. Such types of observations are helpful for further analysis of nanofibrous in their actual environments within the cell.

A Smart DTMC-based Handover Scheme Using Vehicle's Mobility Behavior Profile (차량의 이동성 행동 프로파일을 이용한 DTMC 기반의 스마트 핸드오버 기법)

  • Han, Sang-Hyuck;Kim, Hyun-Woo;Choi, Yong-Hoon;Park, Su-Won;Rhee, Seung-Hyuong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.6B
    • /
    • pp.697-709
    • /
    • 2011
  • For improvement of wireless Internet service quality at vehicle's moving speed, it is advised to reduce the service disruption time by reducing the handover frequency on vehicle's moving path. Particularly, it is advantageous to avoid the handover to cell whose dwell time is short or can be ignored in terms of service continuity and average throughput. This paper proposes the handover scheme that is suitable for vehicle in order to improve the wireless Internet service quality. In the proposed scheme, the handover process continues to be learned before being modeled to Discrete-Time Markov Chain (DTMC). This modeling reduces the handover frequency by preventing the handover to cell that could provide service sufficiently to passenger even when vehicle passed through the cell but there was no need to perform handover. In order to verify the proposed scheme, we observed the average number of handovers, the average RSSI and the average throughput on various moving paths that vehicle moved in the given urban environment. The experiment results confirmed that the proposed scheme was able to provide the improved wireless Internet service to vehicle that moved to some degree of consistency.

Breast Cancer Prevention Information Seeking Behavior and Interest on Cell Phone and Text Use: a Cross-sectional Study in Malaysia

  • Akhtari-Zavare, Mehrnoosh;Ghanbari-Baghestan, Abbas;Latiff, Latiffah A.;Khaniki, Hadi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.4
    • /
    • pp.1337-1341
    • /
    • 2015
  • Background: Breast cancer is the most common cancer and the second principal cause of cancer deaths among women worldwide, including Malaysia. This study focused on media choice and attempted to determine the communication channels mostly used and preferred by women in seeking information and knowledge about breast cancer. Materials and Methods: A cross sectional study was carried out to examine the breast cancer prevention information seeking behavior among 450 students at one private university in Malaysia. Results: The mean age of respondents was $25{\pm}4.3years$. Common interpersonal information sources were doctors, friends, and nurses and common channel information sources were television, brochure, and internet. Overall, 89.9% used cell phones, 46.1% had an interest in receiving cell phone breast cancer prevention messages, 73.9% used text messaging, and 36.7% had an interest in receiving text breast cancer prevention messages. Bivariate analysis revealed significant differences among age, eduation, nationality and use of cell phones. Conclusions: Assessment of health information seeking behavior is important for community health educators to target populations for program development.

CFD-based Flow Simulation Study of Fuel Cell Protective Gas (CFD를 활용한 연료전지 모듈 보호가스 유동 연구)

  • Kwon, Kiwook;Lim, Jongkoo;Park, Jongcheol;Shin, Hyun Khil
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.86.1-86.1
    • /
    • 2011
  • To improve the safety, the fuel cell operate inside a pressurized enclosure which contains inert gas so called protective gas. The protective gas not only prevents the mixture of hydrogen and oxygen, but also removes the water in the vessel with the condenser. This study presents the details of the flow optimization in order to reduce the humidity in the fuel cell housing. The protective gas flow in the fuel cell container is studied by Computational Fluid Dynamics(CFD) simulations. This study focuses on optimizing the geometry of an protective gas circulation system in fuel cell module to reduce the humidity in the vessel. CFD analysis was carried out for an existing model to understand the flow behavior through the fuel cell system. Based on existing model CFD results, geometrical changes like inlet placement, optimization of outlet size, modification of fuel cell module system are carried out, to improve the flow characteristics. The CFD analysis of the optimized model is again carried out and the results show good improvement in protective gas flow behavior.

  • PDF