• 제목/요약/키워드: Cell behavior

검색결과 1,374건 처리시간 0.022초

인공 면역계 기반 자율분산로봇 시스템의 협조 전략과 군행동 (Cooperative Strategies and Swarm Behavior in Distributed Autonomous Robotic Systems Based on Artificial Immune System)

  • 심귀보;이동욱;선상준
    • 제어로봇시스템학회논문지
    • /
    • 제6권12호
    • /
    • pp.1079-1085
    • /
    • 2000
  • In this paper, we propose a method of cooperative control (T-cell modeling) and selection of group behavior strategy (B-cell modeling) based on immune system in distributed autonomous robotic system (DARS). An immune system is the living bodys self-protection and self-maintenance system. these features can be applied to decision making of the optimal swarm behavior in a dynamically changing environment. For applying immune system to DARS, a robot is regarded as a B-cell, each environmental condition as an antigen, a behavior strategy as an antibody, and control parameter as a T-cell, respectively. When the environmental condition (antigen) changes, a robot selects an appropriate behavior strategy (antibody). And its behavior strategy is stimulated and suppressed by other robots using communication (immune network). Finally, much stimulated strategy is adopted as a swarm behavior strategy. This control scheme is based on clonal selection and immune network hypothesis, and it is used for decision making of the optimal swarm strategy. Adaptation ability of the robot is enhanced by adding T-cell model as a control parameter in dynamic environments.

  • PDF

자율이동로봇군의 협조전략과 군행동의 실현을 위한 면역시스템의 모델링 (An Immune System Modeling for Realization of Cooperative Strategies and Group Behavior in Collective Autonomous Mobile Robots)

  • 이동욱;심귀보
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 춘계학술대회 학술발표 논문집
    • /
    • pp.127-130
    • /
    • 1998
  • In this paper, we propose a method of cooperative control(T-cell modeling) and selection of group behavior strategy(B-cell modeling) based on immune system in distributed autonomous robotic system(DARS). Immune system is living body's self-protection and self-maintenance system. Thus these features can be applied to decision making of optimal swarm behavior in dynamically changing environment. For the purpose of applying immune system to DARS, a robot is regarded as a B cell, each environmental condition as an antigen, a behavior strategy as an antibody and control parameter as a T-call respectively. The executing process of proposed method is as follows. When the environmental condition changes, a robot selects an appropriate behavior strategy. And its behavior strategy is stimulated and suppressed by other robot using communication. Finally much stimulated strategy is adopted as a swarm behavior strategy. This control scheme is based of clonal selection and idiotopic network hypothesis. And it is used for decision making of optimal swarm strategy. By T-cell modeling, adaptation ability of robot is enhanced in dynamic environments.

  • PDF

연료전지차 스택 내 국부적 수소 부족에 기인한 셀 역전압 거동 모사에 대한 연구 (A Study to Simulate Cell Voltage-Reversal Behavior Caused by Local Hydrogen Starvation in a Stack of Fuel Cell Vehicle)

  • 박지연;임세준;한국일;홍보기
    • 한국수소및신에너지학회논문집
    • /
    • 제24권4호
    • /
    • pp.311-319
    • /
    • 2013
  • A clear understanding on cell voltage-reversal behavior due to local hydrogen starvation in a stack is of paramount importance to operate the fuel cell vehicle (FCV) stably since it affects significantly the cell performance and durability. In the present study, a novel experimental method to simulate the local cell voltage-reversal behavior caused by local hydrogen starvation, which typically occurs only one or several cells out of several hundred cells in a stack of FCV, has been proposed. Contrary to the conventional method of overall fuel starvation, the present method of local hydrogen starvation caused the local cell voltage-reversal behavior in a stack very well. Degradation of both membrane electrode assembly (i.e., pin-hole formation) and gas diffusion layer due to an excessive exothermic heat under voltage-reversal condition was also observed clearly.

Cooperative Strategies and Swarm Behavior in Distributed Autonomous Robotic Systems based on Artificial Immune System

  • Sim, Kwee-bo;Lee, Dong-wook
    • 한국지능시스템학회논문지
    • /
    • 제11권7호
    • /
    • pp.591-597
    • /
    • 2001
  • In this paper, we propose a method of cooperative control (T-cell modeling) and selection of group behavior strategy (B-cell modeling) based on immune system in distributed autonomous robotic system (DARS). Immune system is living body's self-protection and self-maintenance system. These features can be applied to decision making of optimal swarm behavior in dynamically changing environment. For applying immune system to DARS, a robot is regarded as a B-cell, each environmental condition as an antigen, a behavior strategy as an antibody and control parameter as a T-cell respectively. The executing process of proposed method is as follows. When the environmental condition changes, a robot selects an appropriate behavior strategy. And its behavior strategy is stimulated and suppressed by other robot using communication. Finally much stimulated strategy is adopted as a swarm behavior strategy. This control school is based on clonal selection and idiotopic network hypothesis. And it is used for decision making of optimal swarm strategy. By T-cell modeling, adaptation ability of robot is enhanced in dynamic environments.

  • PDF

가정용 고분자 연료전지의 중합체에 대한 특성해석 (The characteristic analysis for polymer of household macromolecule fuel cell)

  • 조영래;김남화;한경희;윤신용;백수현;김일남
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 B
    • /
    • pp.1722-1724
    • /
    • 2005
  • The focus of this paper is to develop a mathematical model for investigating the dynamic performance of a polymer electrolyte membrane fuel cell. The model in this work is based on physical laws having clear significance in replicating the fuel cell system and can easily be used to set up different operational strategies. Simulation results display the transient behavior of the voltage within each single cell, and also within a number of such single cells combined into a fuel cell stack system. A linear as well as a nonlinear analysis of the polymer electrolyte membrane fuel cell system(PEMFC) has been discussed in order to present a complete and comprehensive view of this kind of modeling. Also, a comparison of the two kinds of analysis has been performed. Finally, the various characteristics of the fuel cell system are plotted in order to help us understand its dynamic behavior. Results indicate that there is a considerable amount of error in the modeling process if we use a linear model of the fuel cell. Thus, the nonlinearities present in the fuel cell system should be taken into account in order to obtain a better understanding of the dynamic behavior of the fuel cell system.

  • PDF

셀 경계의 퍼지화에 의한 셀 매핑 제어 (Cell Hawing Control with Fuzzified Cell Boundaries)

  • 임영빈;윤중선
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.386-386
    • /
    • 2000
  • Cell mapping is a powerful computational technique for analyzing the global behavior of nonlinear dynamic systems. It simplifies the task of analyzing a continuous phase space by partitioning it into a finite number of disjoint cells and approximating system trajectories as cell transitions. A cell map for the system is then constructed based on the allowable control actions. Next search algorithms are employed to identify the optimal or near-optimal sequence(s) of control actions required to drive the system from each cell to the target cell by an "unravelling algorithm." Errors resulting from the cell center-point approximation could be reduced and eliminated by fuzzifying the bonders of cells. The dynamic system control method based on the cell mapping has been demonstrated for a motor control problem.l problem.

  • PDF

Distinct cell populations of ventral tegmental area process motivated behavior

  • Kim, Min Jung;Kaang, Bong-Kiun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제26권5호
    • /
    • pp.307-312
    • /
    • 2022
  • It is well known that dopamine transmission from the ventral tegmental area (VTA) modulates motivated behavior and reinforcement learning. Although dopaminergic neurons are the major type of VTA neurons, recent studies show that a significant proportion of the VTA contains GABAergic and type 2 vesicular glutamate transporter (VGLUT2)-positive neurons. The non-dopaminergic neurons are also critically involved in regulating motivated behaviors. Some VTA neurons appear to co-release two different types of neurotransmitters. They are VGLUT2-DA neurons, VGLUT2-GABA neurons and GABA-DA neurons. These co-releasing neurons show distinct features compared to the neurons that release a single neurotransmitter. Here, we review how VTA cell populations wire to the other brain regions and how these projections differentially contribute to motivated behavior through the distinct molecular mechanism. We summarize the activities, projections and functions of VTA neurons concerning motivated behavior. This review article discriminates VTA cell populations related to the motivated behavior based on the neurotransmitters they release and extends the classical view of the dopamine-mediated reward system.

Asymptotic cell loss decreasing rate in an ATM multiplexer loaded with heterogeneous on-off sources

  • Choi, Woo-Yong;Jun, Chi-Hyuck
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 1996년도 춘계공동학술대회논문집; 공군사관학교, 청주; 26-27 Apr. 1996
    • /
    • pp.543-546
    • /
    • 1996
  • Recently, some research has been done to analyze the asymptotic behavior of queue length distribution in ATM (Asynchronous Transfer Mode) multiplexer. In this paper, we relate this asymptotic behavior with the asymptotic behavior of decreasing cell loss probability when the buffer capacity is increased. We find with reasonable assumptions that the asymptotic rate of queue length distribution is the same as that of decreasing cell loss probability. Even under different priority control schemes and traffic classes, we find that this asymptotic rate of the individual cell loss probability of each traffic class does not change. As a consequence, we propose the upper bound of cell loss probability of each traffic class when a priority control scheme is employed. This bound is computationally feasible in a real-time. The numerical examples will be provided to validate this finding.

  • PDF

The Relationship Between Hydrogen Trapping Behavior and SSCC Suceptibility of API X60/65 Grade Steels

  • Lee, Jae Myung;Kim, Jin Suk;Kim, Kyoo Young
    • Corrosion Science and Technology
    • /
    • 제2권3호
    • /
    • pp.109-116
    • /
    • 2003
  • It is well known that SSCC (sulfide stress corrosion cracking) is caused by drastic ingression of hydrogen during the service and accumulation of hydrogen near the potential crack initiation site in the material. It is important to characterize the hydrogen trapping behavior to evaluate the service performance of the high strength pipeline steels. In this study. the relationship between the hydrogen trapping behavior and SSCC susceptibility is evaluated in terms of alloy composition, microstructure and carbide behavior. The hydrogen trapping behavior was measured by electrochemical hydrogen permeation test cell (Devanathan cell). The SSCC susceptibility is evaluated by constant extension rate test and constant strain lest method. The hydrogen trapping behavior is affected greatly by microstructure and nature of carbide particles. The fine TiC, and NbC in the matrix of ferritic structure acts as strong irreversible trap sites whereas the bainitic structure acts as reversible trap site. The SSCC susceptibility is closely related to not only the hydrogen trapping behavior but also the loading condition. As the activity of reversible trap site increases, SSCC susceptibility decreases under static loading condition below yield strength, whereas SSCC susceptibility increases under dynamic loading condition or above yield strength. As the activity of irreversible trap site increases. SSCC susceptibility increases regardless of loading condition. It is cased by the mixed effect of dislocation on hydrogen diffusion and trapping behavior.

인공면역 시스템 기반 자율분산로봇 시스템의 협조 전략과 군행동 (Cooperative Strategies and Swarm Behavior in Distributed Autonomous Robotic Systems based on Artificial Immune System)

  • 심귀보
    • 한국지능시스템학회논문지
    • /
    • 제9권6호
    • /
    • pp.627-633
    • /
    • 1999
  • 본 논문에서는 면역 시스템에 기반한 자율분산로봇 시스템의 협조 제어 및 군행동 전략의 결정 방법을 제안한다. 면역 시스템은 생체의 자기보호 및 유지시스템이다. 면역 시스템의 유용한 성질은 동적으로 변하는 환경에서 최적의 군행동을 결정하는 문제에 적용 가능하다. 면역 시스템을 자율분산로봇 시스템에 적용하기 위하여 로봇은 B-세포로 환경조건은 항원으로 행동 전략은 항체로 제어파라미터는 T-세포로 각각 모델링 하였다, 환경(항원)변화가 감지되면 각 로봇은 적절한 행동전략(항체)을취한다. 이행동전략은 다른 로봇과의 통신에 의하여 자극 또는 억제을 받는다.(면역 네트워크) 최정적으로 많은 자극을 받은 전략이 군행동 전략으로 채택된다. 이 제어방법은 클론선택과 면역네트워크 가설에 기반을 둔것으로서 최적의 군행동 전략을 결정하는데 이용된다. 또한 제어 파라미터로서 T-세포 모델을 추가함으로서 동적인 환경에서 로봇의 적응능력이 향상되었다.

  • PDF