• 제목/요약/키워드: Cell Type-specific Expression

검색결과 248건 처리시간 0.026초

T24 방광암세포에서 Luteolin과 TRAIL의 복합 처리에 따른 Apoptosis 유도 (Induction of Apoptosis by Combination Treatment with Luteolin and TRAIL in T24 Human Bladder Cancer Cells)

  • 박현수;최영현
    • 한국식품영양과학회지
    • /
    • 제42권9호
    • /
    • pp.1363-1369
    • /
    • 2013
  • 본 연구에서는 플라보노이드 계열 중의 하나인 luteolin을 이용하여 TRAIL에 저항성을 가지는 T24 방광암세포에서 TRAIL 저항성 극복 가능성을 조사하였다. 본 연구의 결과에 의하면 luteolin 및 TRAIL 각각 단독 처리 시 세포증식에 전혀 영향을 미치지 못한 농도의 복합 처리 시 세포증식억제 효과가 크게 증가하였음 알 수 있었다. 이러한 증식억제와 연관된 aspoptosis 유도는 caspase-8의 활성화에 의한 tBid의 발현 증가와 pro-apoptotic 인자인 Bax의 발현 증가로 인한 caspase-9 및 -3의 활성화로 이어지는 type II apoptosis에 의한 것이라 추측되며, 이러한 가정은 각각의 caspase 선택적 저해제를 이용하여 재확인 하였다. 본 연구결과는 TRAIL에 저항성을 보이는 암세포에 luteolin이 감수성을 높이는데 효과적일 수 있으며, 암세포에 대한 combination therapy를 위한 기초자료로 활용성이 높을 것으로 사료된다.

사람 골육종 세포 Saos2에서 아미노산 수송계 L의 발현 및 기능적 특성 (EXPRESSION AND FUNCTIONAL CHARACTERIZATION OF AMINO ACID TRANSPORT SYSTEM L IN SAOS2 HUMAN OSTEOGENIC SARCOMA CELLS)

  • 김수관;김현호;김창현;김도경
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제32권3호
    • /
    • pp.200-208
    • /
    • 2006
  • Amino acids are required for protein synthesis and energy sources in all living cells. The amino acid transport system L is a major nutrient transport system that is responsible for $Na^+$-independent transport of neutral amino acids including several essential amino acids. In malignant tumors, the L-type amino acid transporter 1 (LAT1), the first isoform of system L, is highly expressed to support tumor cell growth. In the present study, the expression and functional characterization of amino acid transport system L were, therefore, investigated in Saos2 human osteogenic sarcoma cells. RT-PCR and western blot analyses have revealed that the Saos2 cells expressed the LAT1 and the L-type amino acid transporter 2 (LAT2), the second isoform of system L, together with their associating protein heavy chain of 4F2 antigen (4F2hc) in the plasma membrane, but the expression of LAT2 was very weak. The uptakes of [${14}^C$]L-leucine by Saos2 cells were $Na^+$-independent and were completely inhibited by the system L selective inhibitor, 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid (BCH). The affinity of [${14}^C$]L-leucine uptake and the inhibition profiles of [${14}^C$]L-leucine uptake by various amino acids in the Saos2 cells were comparable with those for the LAT1 expressed in Xenopus oocytes. The majority of [${14}^C$]L-leucine uptake is, therefore, mediated by LAT1 in the Saos2 cells. These results suggest that the transports of neutral amino acids including several essential amino acids into Saos2 human osteogenic sarcoma cells are for the most part mediated by LAT1. Therefore, the Saos2 human osteogenic sarcoma cells are excellent tools for examine the properties of LAT1. Moreover, the specific inhibition of LAT1 in tumor cells might be a new rationale for anti-tumor therapy.

분자생물학을 이용하여 복제노화된 사람치주인대섬유모세포의 세포학적 연구 (Cellular study of replicative senescence in human periodontal ligament fibroblast using molecular biology)

  • 김병옥;조일준;박주철;국중기;김홍중;장현선
    • Journal of Periodontal and Implant Science
    • /
    • 제35권3호
    • /
    • pp.623-634
    • /
    • 2005
  • Human periodontal ligament fibroblast(hPDLF) is very important to cure periodontal tissue because it can be diverged into various cells. This study examined the expression of MMP-1, TIMP-1, periodontal ligament specific PDLs22, Type I collagen, Fibronectin, TIMP-2, telomerase mRNA in a replicative senescence of hPDLF. The periodontal ligament tissue was obtained from periodontally healthy and non-carious human teeth extracted for orthodontic reasons at the Chosun University Hospital of Dentistry with the donors' informed consent. The hPDLF cells were cultured in a medium containing Dulbecco's modified Eagle medium(DMEM, Gibco BRL, USA) supplemented with 10% fetal bovine serum(FBS, Gibco BRL, USA) at 37C in humidified air with 5% $CO_2$. For the reverse transcription-polymerase chain reaction(RT-PCR) analysis, the total RNA of the 2, 4, 8, 16, 18, and 21 passage cells was extracted using a Trizol Reagent(Invitrogen, USA) in replicative hPDL cells. Two passage cells, i.e. young cells, served as the control, and ${\beta}-actin$ served as the internal control for RT-PCR The results of this study about cell morphology and gene expression according to aging of hPDLF using RT-PCR method are as follows: 1. The size of hPDLF was increased with aging and it was showed that the hPDLF was dying in the final passage. 2. PDLs22 mRNA was expressed in young hPDLF of the two, four, and six passage. 3. TIMP-1 mRNA was expressed in young hPDLF of the two and four passage. 4. There was a tendency that MMP-1 mRNA was weakly expressed over eighteen. 5. Type 1 collagen mRNA was expressed in almost all passages, but it was not expressed in the final passage. 6. Fibronectin mRNA was observed in all passages and it was weakly expressed in the final passage. 7. TIMP-2 and telomerase mRNA were not expressed in this study. Based on above results, it was observed that PDLs22, Type 1 collagen, Fibronectin, MMP-1. and TIMP-1 mRNA in hPDLF were expressed differently with aging. The study using the hPDLF that is collected from healthy patients and periodontitis patients needs in further study.

Myxococcus xanthus socD500에 의한 포자 형성 및 CsgA신호에 특이적 유전자의 발현에 관한 연구 (Myxococcus xanthus socD500 mutation causes Sporulation and Induction of two C-signal Specific Genes)

  • 이병욱
    • 생명과학회지
    • /
    • 제13권2호
    • /
    • pp.184-190
    • /
    • 2003
  • 군집을 이루어 생활을 하는 세균류의 하나인 M. xanthus의 csgA 유전자는 세포 표면 단백질을 암호화하는데 이 단백질은 M. xanthus의 자실체 및 포자 형성을 수반하는 발생 (development)에 필수적이다. csgA 돌연변이들은 정상적인 성장을 보이지만, 발생 과정에서 자실체 및 포자 형성이 불가능하다. 또한, CsgA 세포간 기인한 신호 전달체계에 의해서 유발되는 CsgA 특이적 유전자들의 발현이 없거나 감소한다. socD500돌연변이는, csgA 돌연변이체로부터 자실체 혹은 포자 형성을 회복하게 해주는 2차 돌연변이 중의 하나로서, csgA 돌연변이체의 포자 형성을 회복하도록 한다. socD500에 의한 포자 형성은 영양원의 고갈 및 자실체의 형성이 없이도, 단순히 성장 온도를 $32^{\circ}C$에서 $15^{\circ}C$로 낮추는 것이 의해서 이루어진다. 이런 과정을 거쳐 형성된 포자의 구조를 전자현미경으로 관찰한 결과 정상 포자와는 다르게 단지 얇은 여러 겹의 막들이 존재하였다. 또한 socD500 돌연변이체에서 10개의 CsgA 특이적 유전자들의 발현율을 측정한 결과, 자실체 형성을 수반하는 정상적인 발생시에만 발현하는 ΩDK4506 및 ΩDK4406 유전자들이 $15^{\circ}C$에서 높게 발현되는 것으로 나타났다. 이 결과는 socD500은 CsgA에 특이적인 신호 전달체계에 관련된 일부 유전자들의 발현을 조절하는 역할에 관련되었다는 것을 알 수가 있었다.

Localization of Single Chain Fv Antibodies (scFv) in Transgenic Tobacco Ptants Showing Resistance against Tomato Bushy Stunt Virus

  • Jeun, Y.C.;Boonrod, K.;Nagy, P.;Conrad, U.;Krczal, G.
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.75.2-75
    • /
    • 2003
  • To develop an effective protection strategy against tomato bushy stunt virus (TBSV), tobacco plants expressing single-chain Fv antibodies (scFv), were established. A previous had shown that the replication activity of viral replicase was inhibited by the selected scFvs. Moreover, no systemic symptom was found after virus inoculation on leaves of wt N. benthamiana infiltrated with an Agrobacterium suspension resulting i3l expression of the scFvs. However, control plants showed systemic symptoms. In this study the localization of the scFvs within two transgenic plant lines, (CP28H3, CP-P55) was demonstrated using immunogold labelling. The gold particles, indicating the presence of scFv, were mostly found In the cytoplasm of the plant cells including chloroplasts and in the cell walls. However, they were hardly found in the vacuole, nucleoplasm and intercellular spaces. Gold particles often accumulated in either the cytosol or chloroplasts showing a specific labeling, There was no difference in type of gold labeling between both transgenic lines. The localization of the scFv in the cytoplasm further conforms the inhibition of the RNA-dependent RNA polymerase (RdRp) by the selected scFv because it is known that the RdRp is localized to membraneous cytosolic structures.

  • PDF

Expression of the Pro-Domain-Deleted Active Form of Caspase-6 in Escherichia coli

  • Lee, Phil Young;Cho, Jin Hwa;Chi, Seung Wook;Bae, Kwang-Hee;Cho, Sayeon;Park, Byoung Chul;Kim, Jeong-Hoon;Park, Sung Goo
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권5호
    • /
    • pp.719-723
    • /
    • 2014
  • Caspases are a family of cysteine proteases that play an important role in the apoptotic pathway. Caspase-6 is an apoptosis effector that cleaves a variety of cellular substrates. The active form of the enzyme is required for use in research. However, it has been difficult to obtain sufficient quantities of active caspase-6 from Escherichia coli. In the present study, we constructed a caspase-6 with a 23-amino-acid deletion in the pro-domain. This engineered enzyme was expressed as a soluble protein in E. coli and was purified using affinity resin. In vitro enzyme assay and cleavage analysis revealed that the engineered active caspase-6 protein had characteristics similar to those of wild-type caspase-6. This novel method can be a valuable tool for obtaining active caspase-6 that can be used for screening caspase-6-specific substrates, which in turn can be used to elucidate the function of caspase-6 in apoptosis.

Epitranscriptomic regulation of transcriptome plasticity in development and diseases of the brain

  • Park, Chan-Woo;Lee, Sung-Min;Yoon, Ki-Jun
    • BMB Reports
    • /
    • 제53권11호
    • /
    • pp.551-564
    • /
    • 2020
  • Proper development of the nervous system is critical for its function, and deficits in neural development have been implicated in many brain disorders. A precise and predictable developmental schedule requires highly coordinated gene expression programs that orchestrate the dynamics of the developing brain. Especially, recent discoveries have been showing that various mRNA chemical modifications can affect RNA metabolism including decay, transport, splicing, and translation in cell type- and tissue-specific manner, leading to the emergence of the field of epitranscriptomics. Moreover, accumulating evidences showed that certain types of RNA modifications are predominantly found in the developing brain and their dysregulation disrupts not only the developmental processes, but also neuronal activities, suggesting that epitranscriptomic mechanisms play critical post-transcriptional regulatory roles in development of the brain and etiology of brain disorders. Here, we review recent advances in our understanding of molecular regulation on transcriptome plasticity by RNA modifications in neurodevelopment and how alterations in these RNA regulatory programs lead to human brain disorders.

유전자 재조합 Human galectin-3의 발현과 성상 (Expression and characterization of the recombinant human galectin-3)

  • 김병규;우희종
    • 대한수의학회지
    • /
    • 제37권3호
    • /
    • pp.547-554
    • /
    • 1997
  • Galectin-3 is known as an animal ${\beta}$-galactoside-binding lectin charicterized with S-type carbohydrate recognition domain. It plays a role in growth, adherence and movement of cells. It is, also, related to the cell transformation and metastasis of tumor cells. In this study, we have expressed and purified recombinant human galectin-3 (rHgalectin-3) using E coli system and asialofetuin affinity chromatography for the future development of monoclonal antibody to Hgalectin-3, which is suggested as the tumor marker for the gastric and thyroid gland cancers. Expressed protein was confirmed as the Hgalectin-3 by immunoblot with cross-reactive murine monoclonal antibody. Lectin activity and specificity of purified protein were, also, confirmed by the competitive inhibition with galectin-3 specific carbohydrate, lactose. Like physiological galectin-3, lectin activity of the molecule was not changed in nonreduced condition. Dimer formation, furthermore, was observed at high concentration of the protein even in the reduced condition, which is well known in physiological galectin-3. These results showed purified rHgalectin-3 has the same activity and molecular nature compared to the physiological galectin-3.

  • PDF

Effects of immunosuppressants, FK506 and cyclosporin A, on the osteogenic differentiation of rat mesenchymal stem cells

  • Byun, Yu-Kyung;Kim, Kyoung-Hwa;Kim, Su-Hwan;Kim, Young-Sung;Koo, Ki-Tae;Kim, Tai-Il;Seol, Yang-Jo;Ku, Young;Rhyu, In-Chul;Lee, Yong-Moo
    • Journal of Periodontal and Implant Science
    • /
    • 제42권3호
    • /
    • pp.73-80
    • /
    • 2012
  • Purpose: The purpose of this study was to investigate the effects of the immunosuppressants FK506 and cyclosporin A (CsA) on the osteogenic differentiation of rat mesenchymal stem cells (MSCs). Methods: The effect of FK506 and CsA on rat MSCs was assessed in vitro. The MTT assay was used to determine the deleterious effect of immunosuppressants on stem cell proliferation at 1, 3, and 7 days. Alkaline phosphatase (ALP) activity was analyzed on days 3, 7, and 14. Alizarin red S staining was done on day 21 to check mineralization nodule formation. Real-time polymerase chain reaction (RT-PCR) was also performed to detect the expressions of bone tissue-specific genes on days 1 and 7. Results: Cell proliferation was promoted more in the FK506 groups than the control or CsA groups on days 3 and 7. The FK506 groups showed increased ALP activity compared to the other groups during the experimental period. The ALP activity of the CsA groups did not differ from the control group in any of the assessments. Mineralization nodule formation was most prominent in the FK506 groups at 21 days. RT-PCR results of the FK506 groups showed that several bone-related genes-osteopontin, osteonectin, and type I collagen (Col-I)-were expressed more than the control in the beginning, but the intensity of expression decreased over time. Runx2 and Dlx5 gene expression were up-regulated on day 7. The effects of 50 nM CsA on osteonectin and Col-I were similar to those of the FK506 groups, but in the 500 nM CsA group, most of the genes were less expressed compared to the control. Conclusions: These results suggest that FK506 enhances the osteoblastic differentiation of rat MSCs. Therefore, FK506 might have a beneficial effect on bone regeneration when immunosuppressants are needed in xenogenic or allogenic stem cell transplantation to treat bone defects.

Pseudomonas syringae pv. tabaci 에서 식물세포접촉에 의한 병원성 유전자의 조절 (Plant Cell Contact-Dependent Virulence Regulation of hrp Genes in Pseudomonas syringae pv. tabaci 11528)

  • 이준승;차지영;백형석
    • 생명과학회지
    • /
    • 제21권2호
    • /
    • pp.227-234
    • /
    • 2011
  • Pseudomonas syringae pv. tabaci는 숙주인 담배에 감염하여 들불병(wild fire)을 일으키는 식물 병원성 세균이다. 이 세균의 pathogenicity island (PAI)는 Type III secretion system 및 병원성 유전자들을 암호화하고 있으며, 병원성 조절에 있어 핵심적인 역할을 한다. 최근 식물 병원성 세균인 Ralstonia solanacearum에서 식물 세포 접촉을 매개로 하여 hrp gene cluster를 양성조절하는 PrhA (plant regulator of hrp) receptor가 발견되었다. 본 연구에서는 P. syringae에서 식물세포에 의해 hrp 유전자가 유도되는지 확인하기 위해, prhA 유사체를 동정하고 PrhA 결실돌연변이주(BL11)를 구축하였다. BL11은 숙주 감염 실험에서 병원성이 현저히 감소하였고, 식물 세포현탁액에서 hrpA 유전자의 발현수준이 hrp 유도배지에서 보다 3배 더 높게 나타났다. 이러한 결과들을 근거로 PrhA가 식물세포접촉에 의한 조절에 중요한 역할을 한다는 것을 확인하였으며, hrpA-gfp reporter fusion을 사용하여 이를 다시 검증하였다.