• Title/Summary/Keyword: Cell Sorting

Search Result 137, Processing Time 0.028 seconds

Characterization of MACS Isolated Cells from Differentiated Human ES Cells (인간 배아줄기세포로부터 분화된 세포에서 MACS 방법을 이용하여 분리한 세포의 특성에 대한 연구)

  • Cho, Jae Won;Lim, Chun Kyu;Shin, Mi Ra;Bang, Kyoung Hee;Koong, Mi Kyoung;Jun, Jin Hyun
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.33 no.3
    • /
    • pp.171-178
    • /
    • 2006
  • Objective: Human embryonic stem (ES) cells have a great potential in regenerative medicine and tissue engineering. The human ES cells could be differentiated into specific cell types by treatments of growth factors and alterations of gene expressions. However, the efficacy of guided differentiation and isolation of specific cells are still low. In this study, we characterized isolated cells from differentiated human ES cells by magnetic activated cell sorting (MACS) system using specific antibodies to cell surface markers. Methods: The undifferentiated hES cells (Miz-hESC4) were sub-cultured by mechanical isolation of colonies and embryoid bodies were spontaneously differentiated with DMEM containing 10% FBS for 2 weeks. The differentiated cells were isolated to positive and negative cells with MACS system using CD34, human epithelial antigen (HEA) and human fibroblast (HFB) antibodies, respectively. Observation of morphological changes and analysis of marker genes expression were performed during further culture of MACS isolated cells for 4 weeks. Results: Morphology of the CD34 positive cells was firstly round, and then it was changed to small polygonal shape after further culture. The HEA positive cells showed large polygonal, and the HFB positive spindle shape. In RT-PCR analysis of marker genes, the CD34 and HFB positive cells expressed endodermal and mesodermal genes, and HEA positive cells expressed ectodermal genes such as NESTIN and NF68KD. The marker genes expression pattern of CD34 positive cells changed during the extension of culture time. Conclusion: Our results showed the possibility of successful isolation of specific cells by MACS system from undirected differentiated human ES cells. Thus, MACS system and marker antibodies for specific cell types might be useful for guided differentiation and isolation of specific cells from human ES cells.

Use of Peristeum as a Source of Endothelial-like Cells (혈관내피유사세포 채취의 원천으로 골막의 활용)

  • Park, Bong-Wook;Kim, Shin-Won;Kim, Uk-Kyu;Hah, Young-Sool;Kim, Jin-Hyun;Kim, Deok-Ryong;Sung, Iel-Young;Cho, Yeong-Cheol;Son, Jang-Ho;Kim, Jong-Ryoul;Byun, June-Ho
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.33 no.5
    • /
    • pp.385-391
    • /
    • 2011
  • Purpose: The periosteum is a well-known source of osteogenic precursor cells for tissue-engineered bone formation. However, cultured endothelial or endothelial-like cells derived from periosteum have not yet been investigated. This study focused on endothelial-like cell culture from the periosteum. Methods: Periosteal tissues were harvested from the mandible during surgical extraction of lower impacted third molars. The tissues were treated with 0.075% type I collagenase in phosphate-buffered saline (PBS) for 1 hr at $37^{\circ}C$ to release cellular fractions. The collagenase was inactivated with an equal volume of DMEM/10% fetal bovine serum (FBS) and the infranatant was centrifuged for 10 min at 2,400 rpm. The cellular pellet was filtered through a $100{\mu}m$ nylon cell strainer, and the filtered cells were centrifuged for 10 min at 2,400 rpm. The resuspended cells were plated into T25 flasks and cultured in endothelial cell basal medium (EBM)-2. Results: Among the hematopoietic markers, CD146 was more highly expressed than CD31 and CD34. The periosteal-derived cells also expressed CD90 and CD166, mesenchymal stem cell markers. Considering that the expression of CD146 was constant and that the expression of CD90 was lower at passage 5, respectively, the CD146 positive cells in passage 5 were isolated using the magnetic cell sorting (MACS) system. These CD146 sorted, periosteal-derived cells formed tube-like structures on Matrigel. The uptake of acetylated, low-density lipoprotein, labeled with 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI-Ac-LDL) was also examined in these cells. Conclusion: These results suggest that the CD146-sorted positive cells can be referred to as periosteal-derived CD146 positive endothelial-like cells. In particular, when a co-culture system with endothelial and osteoblastic cells in a three-dimensional scaffold is used, the use of periosteum as a single cell source would be strongly beneficial for bone tissue engineering.

Comparative Analysis for In Vitro Differentiation Potential of Induced Pluripotent Stem Cells, Embryonic Stem Cells, and Multipotent Spermatogonial Stem Cells into Germ-lineage Cells

  • Go, Young-Eun;Kim, Hyung-Joon;Jo, Jung-Hyun;Lee, Hyun-Ju;Do, Jeong-Tae;Ko, Jung-Jae;Lee, Dong-Ryul
    • Development and Reproduction
    • /
    • v.15 no.1
    • /
    • pp.41-52
    • /
    • 2011
  • In the present study, embryoid bodies (EBs) obtained from induced pluripotent stem cells (iPSCs) were induced to differentiate into germ lineage cells by treatment with bone morphogenetic protein 4 (BMP4) and retinoic acid (RA). The results were compared to the results for embryonic stem cells (ESCs) and multipotent spermatogonial stem cells (mSSCs) and quantified using immunocytochemical analysis of germ cell-specific markers (integrin-${\alpha}6$, GFR-${\alpha}1$, CD90/Thy1), fluorescence activating cell sorting (FACS), and real time-RT-PCR. We show that the highest levels of germ cell marker-expressing cells were obtained from groups treated with 10 ng/$m{\ell}$ BMP4 or 0.01 ${\mu}M$ RA. In the BMP4-treated group, GFR-${\alpha}1$ and CD90/Thy-1 were highly expressed in the EBs of iPSCs and ESCs compared to EBs of mSSCs. The expression of Nanog was much lower in iPSCs compared to ESCs and mSSCs. In the RA treated group, the level of GFR-${\alpha}1$ and CD90/Thy-1 expression in the EBs of mSSCs Induced pluripotent stem cells, Mouse embryonic stem cells, Multipotent spermatogonial stem cells, Germ cell lineage, Differentiation potential. was much higher than the levels found in the EBs of iPSCs and similar to the levels found in the EBs of ESCs. FACS analysis using integrin-${\alpha}6$, GFR-${\alpha}1$, CD90/Thy1 and immunocytochemistry using GFR-${\alpha}1$ antibody showed similar gene expression results. Therefore our results show that iPSC has the potential to differentiate into germ cells and suggest that a protocol optimizing germ cell induction from iPSC should be developed because of their potential usefulness in clinical applications requiring patient-specific cells.

The expression of Foxp3 protein by retroviral vector-mediated gene transfer of Foxp3 in C57BL/6 mice (C57BL/6 마우스에서 Retroviral 벡터를 이용한 Foxp3 유전자의 도입에 의한 Foxp3 단백의 발현 양상)

  • Hwang, Insun;Ha, Danbee;Bing, So Jin;Jeon, Kyong-Leek;Ahn, Ginnae;Kim, Dae Seung;Cho, Jinhee;Lim, Jaehak;Im, Sin-Hyeog;Hwang, Kyu-Kye;Jee, Youngheun
    • Korean Journal of Veterinary Research
    • /
    • v.52 no.3
    • /
    • pp.183-191
    • /
    • 2012
  • The maintenance of peripheral immune tolerance and prevention of chronic inflammation and autoimmune disease require $CD4^{+}CD25^{+}$ T cells (regulatory T cells). The transcription factor Foxp3 is essential for the development of functional, regulatory T cells, which plays a prominent role in self-tolerance. Retroviral vectors can confer high level of gene transfer and transgene expression in a variety of cell types. Here we observed that following retroviral vector-mediated gene transfer of Foxp3, transductional Foxp3 expression was increased in the liver, lung, brain, heart, muscle, spinal cord, kidney and spleen. One day after vector administration, high levels of transgene and gene expression were observed in liver and lung. At 2 days after injection, transductional Foxp3 expression level was increased in brain, heart, muscle and spinal cord, but kidney and spleen exhibited a consistent low level. This finding was inconsistent with the increase in both $CD4^{+}CD25^{+}$ T cell and $CD4^{+}Foxp3^{+}$ T cell frequencies observed in peripheral immune cells by fluorescence-activated cell-sorting (FACS) analysis. Retroviral vector-mediated gene transfer of Foxp3 did not lead to increased numbers of $CD4^{+}CD25^{+}$ T cell and $CD4^{+}Foxp3^{+}$ T cell. These results demonstrate the level and duration of transductional Foxp3 gene expression in various tissues. A better understanding of Foxp3 regulation can be useful in dissecting the cause of regulatory T cells dysfunction in several autoimmune diseases and raise the possibility of enhancing suppressive functions of regulatory T cells for therapeutic purposes.

A PDPWM Based DC Capacitor Voltage Control Method for Modular Multilevel Converters

  • Du, Sixing;Liu, Jinjun;Liu, Teng
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.660-669
    • /
    • 2015
  • This paper presents a control scheme with a focus on the combination of phase disposition pulse width modulation (PDPWM) and DC capacitor voltage control for a chopper-cell based modular multilevel converter (MMC) for the purpose of eliminating the time-consuming voltage sorting algorithm and complex voltage balancing regulators. In this paper, the convergence of the DC capacitor voltages within one arm is realized by charging the minimum voltage module and discharging the maximum voltage module during each switching cycle with the assistances of MAX/MIN capacitor voltage detection and PDPWM signals exchanging. The process of voltage balancing control introduces no extra switching commutation, which is helpful in reducing power loss and improving system efficiency. Additionally, the proposed control scheme also possess the merit of a simple executing procedure in application. Simulation and experimental results indicates that the MMC circuit together with the proposed method functions very well in balancing the DC capacitor voltage and improving system efficiency even under transient states.

A Study on Improvement of Valuable Metals Leaching and Distribution Characteristics on Waste PCBs(Printed Circuit Boards) by Using Pulverization Process (폐 PCBs의 미분쇄 공정 적용에 따른 유가금속 분포 특성 및 금속 침출 향상에 관한 연구)

  • Han, Young-Rip;Choi, Young-Ik
    • Journal of Environmental Science International
    • /
    • v.24 no.2
    • /
    • pp.245-251
    • /
    • 2015
  • The main objective of this study is to recovery valuable metals with metal particle size distributions in waste cell phone PCBs(Printed Circuit Boards) by means of pulverization and nitric acid process. The particle size classifier also was evaluated by specific metal contents. The PCBs were pulverized by a fine pulverizer. The particle sizes were classified by 5 different sizes which were PcS1(0.2 mm below), PcS2(0.20~0.51 mm), PcS3(0.51~1.09 mm), PcS4(1.09~2.00 mm) and PcS5(2.00 mm above). Non-magnetic metals in the grinding particles were separated by a hand magnetic. And then, Cu, Co and Ni were separated by 3M nitric acid. Particle diameter of PCBs were 0.388~0.402 mm after the fine pulverizer. The sorting coefficient were 0.403~0.481. The highest metal content in PcS1. And the bigger particle diameter, the lower the valuable metals exist. The recovery rate of the valuable metals increases in smaller particle diameter with same leaching conditions. For further work, it could improve to recovery of the valuable metals effectively by means of individual treatment, multistage leaching and different leaching solvents.

Interleukin-13 Increases Podocyte Apoptosis in Cultured Human Podocytes

  • Lee, Keum Hwa;Oh, Ji Young;Seong, Su-Bin;Ha, Tae-Sun;Shin, Jae Il
    • Childhood Kidney Diseases
    • /
    • v.22 no.1
    • /
    • pp.22-27
    • /
    • 2018
  • Purpose: Podocytes are important architectures that maintain the crucial roles of glomerular filtration barrier functions. Despite this structural importance, however, the mechanisms of the changes in podocytes that can be an important pathogenesis of minimal change nephrotic syndrome (MCNS) are not clear yet. The aim of this study was to investigate whether apoptosis is induced by interleukin (IL)-13 in cultured human podocytes. Methods: Human podocytes were treated with different IL-13 doses and apoptotic cells were analyzed using terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL assay) and fluorescence-activated cell sorting (FACS). Results: The IL-13 increased the number of TUNEL-positive cells in a dose-dependent manner at 6 and 18 hours (P<0.05 and P<0.05, respectively). The apoptosis rate was appeared to be increased slightly in the IL-13-stimulated podocytes (8.63%, 13.02%, and 14.46%; 3, 10 and 30 ng/mL, respectively) than in the control cells (7.66%) at 12 hours by FACS assay. Conclusion: Our study revealed that IL-13 expression may increase podocyte apoptosis. Blocking the IL-13 signal pathway can potentially play an important role in regulating the apoptosis of podocytes.

Expression of Sortase, a Transpeptidase for Cell Wall Sorting Reaction, from Staphylococcus aureus ATCC 6538p in Escherichia coli

  • LEE, KI-YOUNG;DONG-SUN SHIN;JUNG-MIN YOON;HEONJOONG KANG;KI-BONG OH
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.3
    • /
    • pp.530-533
    • /
    • 2002
  • This paper describes the development of an enzymatic assay system for the identification of specific inhibitors of sortase, a transpeptidase that cleaves surface proteins of Cram-positive bacteria, from Staphylococcus aureus ATCC 6538p for antibacterial drug discovery. The coding region of the enzyme was amplified with the exception of the N-terminal membrane anchor sequence, cloned into a vector providing His-Patch-thioredoxin-tag at the N-terminus, expressed in Escherichia coli, and purified by metal chelate affinity chromatography. The enzyme activity was determined by quantifying increased fluorescence intensity upon cleavage of synthetic Dabcyl-QALPETGEE-Edans peptide. The results suggest that the developed in vitro assay system call be used in the search for sortase inhibitors In a short period of time.

The Importance of FACS Analysis in the Development of Aptamers Specific to Pathogens

  • Moon, Ji-Hea;Kim, Giyoung;Park, Saet Byeol;Lim, Jongguk;Mo, Changyeun
    • Journal of Biosystems Engineering
    • /
    • v.39 no.2
    • /
    • pp.111-114
    • /
    • 2014
  • Purpose: This review aims to introduce aptamers and the methods of its development to improve the sensitivity and selectivity to target bacteria. In this review, we have highlighted current developments and directions in the pathogen detection based on aptamers. Background: Aptamers, the specific nucleic acid sequences, can bind to targets with high affinity and specificity. Some of researches on the use of aptamers for the detection of pathogen have been reported in recent years. Aptamers have more applicability than antibodies for the development of pathogen detection using biosensor; such as easy to synthesis and labeling, lack of immunogenicity, and a low cost of production. However, only few reports on the development and use of aptamers for the detection of pathogen have been published. Review: Aptamers specific to pathogen are obtained by whole-cell systematic evolution of ligands by exponential enrichment (SELEX) process. SELEX process is composed of screening random oligonucleotide bound with target cells, multiple separation and amplification of nucleic acids, final identification of the best sequences. For improving those affinity and selectivity to target bacteria, optimization of multiple separating process to remove unbounded oligonucleotides from aptamer candidates and sorting process by flow cytometry are required.

Phosphoinositide turnover in Toll-like receptor signaling and trafficking

  • Le, Oanh Thi Tu;Nguyen, Tu Thi Ngoc;Lee, Sang Yoon
    • BMB Reports
    • /
    • v.47 no.7
    • /
    • pp.361-368
    • /
    • 2014
  • Lipid components in biological membranes are essential for maintaining cellular function. Phosphoinositides, the phosphorylated derivatives of phosphatidylinositol (PI), regulate many critical cell processes involving membrane signaling, trafficking, and reorganization. Multiple metabolic pathways including phosphoinositide kinases and phosphatases and phospholipases tightly control spatio-temporal concentration of membrane phosphoinositides. Metabolizing enzymes responsible for PI 4,5-bisphosphate (PI(4,5)P2) production or degradation play a regulatory role in Toll-like receptor (TLR) signaling and trafficking. These enzymes include PI 4-phosphate 5-kinase, phosphatase and tensin homolog, PI 3-kinase, and phospholipase C. PI(4,5)P2 mediates the interaction with target cytosolic proteins to induce their membrane translocation, regulate vesicular trafficking, and serve as a precursor for other signaling lipids. TLR activation is important for the innate immune response and is implicated in diverse pathophysiological disorders. TLR signaling is controlled by specific interactions with distinct signaling and sorting adaptors. Importantly, TLR signaling machinery is differentially formed depending on a specific membrane compartment during signaling cascades. Although detailed mechanisms remain to be fully clarified, phosphoinositide metabolism is promising for a better understanding of such spatio-temporal regulation of TLR signaling and trafficking.