• 제목/요약/키워드: Cell Migration

검색결과 1,202건 처리시간 0.029초

Corticotropin-Releasing Hormone (CRH)에 의한 인간 위암 세포(MKN-28)의 Migration 증가 (Enhancement of Cell Migration by Corticotropin-Releasing Hormone (CRH) in Human Gastric Cancer Cell Line, MKN-28)

  • 천소영;조대호
    • IMMUNE NETWORK
    • /
    • 제4권4호
    • /
    • pp.244-249
    • /
    • 2004
  • Background: Corticotropin-Releasing Hormone (CRH), an important regulator of stress response, has a potent immunoregulatory effect with the ability to promote the growth of various cancer through CRH receptor type 1 under stress. Although the metastasized cancers through cell migration are more aggressive than the primary cancers, little is known about the effect of CRH on cell migration. Gastric cancer is prone to metastasize to other tissues and it is reported that gastric cancer is response to various stresses such as oxidative stress. Herein, we studied the relationship between CRH and gastric cancer cell migration. Methods: We used gastric cancer cell line, MKN-28 and tested the CRH receptor type 1 expression on MKN-28 by RT-PCR. To examine the change in the ability of migration by CRH in MKN-28, cells were incubated with CRH and then migration ability was measured using a cell migration assay. Results: We confirmed that CRH receptor type 1 was expressed in MKN-28 and HaCaT cells. The migration ability of MKN-28 cells was increased by CRH in a time-, dose- dependent manner. Conclusion: These data suggest that CRH increases migration ability in gastric cancer cell line and that CRH may be a critical regulator in the metastasis of gastric cancer cell.

Role of Non-Thermal DBD Plasma on Cell Migration and Cell Proliferation in Wound Healing

  • Ali, Anser;Lee, Seung Hyun;Kim, Yong Hee;Uhm, Han Sup;Choi, Eun Ha;Park, Bong Joo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.526-526
    • /
    • 2013
  • Plasma technology isbeing developed for a range of medical applications including wound healing. However, the effect of plasma on many cells and tissues is unclear. Cell migration and cell proliferation are very important biological processes which are affected by plasma exposure and might be a potential target for plasma therapy during wound healing treatment. In this study, we confirmed the plasma exposure time and incubation time after plasma treatment in skin fibroblast (L-929 cells) to evaluate the optimal conditions forplasma exposure to the cell in-vitro. In addition, we used a scratch method to generate artificial wound for evaluating the cell migration by plasma treatment. Where, the cells were treated with plasma and migration rate was observed by live-cell imaging device. To find the cell proliferation, cell viability assay was executed. The results of this study indicate the increased cell proliferation and migration on mild plasma treatment. The mechanisms for cell migration and cell proliferation after plasma treatment for future studies will be discussed.

  • PDF

Primary Cilium by Polyinosinic:Polycytidylic Acid Regulates the Regenerative Migration of Beas-2B Bronchial Epithelial Cells

  • Gweon, Bomi;Jang, Tae-Kyu;Thuy, Pham Xuan;Moon, Eun-Yi
    • Biomolecules & Therapeutics
    • /
    • 제30권2호
    • /
    • pp.170-178
    • /
    • 2022
  • The airway epithelium is equipped with the ability to resist respiratory disease development and airway damage, including the migration of airway epithelial cells and the activation of TLR3, which recognizes double-stranded (ds) RNA. Primary cilia on airway epithelial cells are involved in the cell cycle and cell differentiation and repair. In this study, we used Beas-2B human bronchial epithelial cells to investigate the effects of the TLR3 agonist polyinosinic:polycytidylic acid [Poly(I:C)] on airway cell migration and primary cilia (PC) formation. PC formation increased in cells incubated under serum deprivation. Migration was faster in Beas-2B cells pretreated with Poly(I:C) than in control cells, as judged by a wound healing assay, single-cell path tracking, and a Transwell migration assay. No changes in cell migration were observed when the cells were incubated in conditioned medium from Poly(I:C)-treated cells. PC formation was enhanced by Poly(I:C) treatment, but was reduced when the cells were exposed to the ciliogenesis inhibitor ciliobrevin A (CilioA). The inhibition of Beas-2B cell migration by CilioA was also assessed and a slight decrease in ciliogenesis was detected in SARS-CoV-2 spike protein (SP)-treated Beas-2B cells overexpressing ACE2 compared to control cells. Cell migration was decreased by SP but restored by Poly(I:C) treatment. Taken together, our results demonstrate that impaired migration by SP-treated cells can be attenuated by Poly(I:C) treatment, thus increasing airway cell migration through the regulation of ciliogenesis.

Talin-1 Correlates with Reduced Invasion and Migration in Human Hepatocellular Carcinoma Cells

  • Fang, Kun-Peng;Zhang, Jian-Lin;Ren, Yan-Hong;Qian, Ye-Ben
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권6호
    • /
    • pp.2655-2661
    • /
    • 2014
  • Background: Talin-1 is a cytoskeleton protein that participates in cell migration and plays a role in tumor formation, migration, and metastasis in different types of cancer. Chinese investigators have observed that the levels of Talin-1 protein and mRNA expression in HCC tissues are significantly lower than in the adjacent non-cancerous tissue. However, Japanese investigators have reported that Talin-1 is upregulated in HCC. Tln2 as homologous gene of Tln-1, which encodes a very similar protein, but the role of Talin-2 is very little known in primary liver cancer (PLC). We investigated whether the expression of Talin-1 in PLC may be associated with the histological subtype as well as the role of Talin-1 in tumor cell invasion and migration using human hepatocellular carcinoma cell lines. Materials and Methods: We measured the mRNA expression levels of Talin-1 and Talin-2 in five human liver cancer cell lines and normal human liver cell ($LO_2$ cell line) by real-time PCR and the protein expression levels of Talin-1 by Western blot. Migration and invasion of the cells were assessed using transwell assays and cell scratch experiments, respectively, and proliferation was assessed by soft AGAR colony formation. Results: Talin-1 and Talin-2 expression differed significantly between the five human liver cancer cell lines and $LO_2$ cell line (p<0.05). Compared with the $LO_2$ cell line, the invasion and migration capabilities of the five cancer cell lines differed significantly (p<0.05). Similarly, the colony-forming ability differed (p<0.05). Conclusions: High levels of Talin-1 expression are correlated with reduced invasion and migration as well as decreased malignancy in human liver cancer cell lines; the suppression of Talin-1 promotes invasion and migration. In addition, Talin-2 may be correlated with invasion and migration in human hepatocellular carcinoma.

Mouse Melanoma Cell Migration is Dependent on Production of Reactive Oxygen Species under Normoxia Condition

  • Im, Yun-Sun;Ryu, Yun-Kyoung;Moon, Eun-Yi
    • Biomolecules & Therapeutics
    • /
    • 제20권2호
    • /
    • pp.165-170
    • /
    • 2012
  • Cell migration plays a role in many physiological and pathological processes. Reactive oxygen species (ROS) produced in mammalian cells influence intracellular signaling processes which in turn regulate various biological activities. Here, we investigated whether melanoma cell migration could be controlled by ROS production under normoxia condition. Cell migration was measured by wound healing assay after scratching confluent monolayer of B16F10 mouse melanoma cells. Cell migration was enhanced over 12 h after scratching cells. In addition, we found that ROS production was increased by scratching cells. ERK phosphorylation was also increased by scratching cells but it was decreased by the treatment with ROS scavengers, N-acetylcysteine (NAC). Tumor cell migration was inhibited by the treatment with PD98059, ERK inhibitor, NAC or DPI, well-known ROS scavengers. Tumor cell growth as judged by succinate dehydrogenase activity was inhibited by NAC treatment. When mice were intraperitoneally administered with NAC, the intracellular ROS production was reduced in peripheral blood mononuclear cells. In addition, B16F10 tumor growth was significantly inhibited by in vivo treatment with NAC. Collectively, these findings suggest that tumor cell migration and growth could be controlled by ROS production and its downstream signaling pathways, in vitro and in vivo.

Contribution of RIZ1 to Regulation of Proliferation and Migration of a Liver Fluke-Related Cholangiocarcinoma Cell

  • Khaenam, Prasong;Niibori, Akiko;Okada, Seiji;Jearanaikoon, Patcharee;Araki, Norie;Limpaiboon, Temduang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권8호
    • /
    • pp.4007-4011
    • /
    • 2012
  • Purpose: Retinoblastoma-interacting zinc finger gene (RIZ1) is a tumor suppressor gene which is highly inactivated by promoter hypermethylation in patients with liver fluke-related cholangiocarcinoma (CCA). Epigenetic aberration of this gene might withdraw the ability to restrain tumor cell proliferation and migration. We aimed to define the role of RIZ1 on cell proliferation and migration in CCA cell line. Materials and methods: Small interference RNA (siRNA) was used to knock down the expression of RIZ1 in a CCA-derived cell line in which cell proliferation and cell migration were performed. Results: A predominant nuclear localization of RIZ1 was observed. Reduction of RIZ1 by siRNA augmented cell proliferation and migration. Conclusion: The result suggested that RIZ1 might play a role in regulating cell proliferation and migration in CCA. Reduction of RIZ1 expression may aggravate the progression of CCA.

Corticotropin-Releasing Hormone (CRH)에 의한 인간 자연 살해 세포(NK-92MI)의 Migration 억제 (Inhibition of Cell Migration by Corticotropin-Releasing Hormone (CRH) in Human Natural Killer Cell Line, NK-92MI)

  • 천소영;방사익;조대호
    • IMMUNE NETWORK
    • /
    • 제5권4호
    • /
    • pp.247-251
    • /
    • 2005
  • Background: Natural killer (NK) cells are CD3 (-) CD14 (-) CD56 (+) lymphocytes. They play an important role in the body's innate immune response. They can induce spontaneous killing of cancer cells or virus-infected cells via the Fas/Fas ligand or the granzyme/perforin systems. The corticotropin-releasing hormone (CRH) is an important regulator for the body's stress response. It promotes proliferation and migration of various cancer cells through the CRH type 1 receptor under stress, and also inhibits NK or T cell activity. However, the relationship of CRH and NK cell migration to the target has not been confirmed. Herein, we study the effect of CRH on NK cell migration. Methods: We used the human NK cell line, NK-92MI, and tested the expression of CRH receptor type 1 on NK-92MI by RT-PCR. This was to examine the effect of CRH on tumor and NK cell migration, thus NK cells (NK-92MI) were incubated with or without CRH and then each CRH treated cell's migration ability compared to that of the CRH untreated group. Results: We confirmed that CRH receptor type 1 is expressed in NK-92MI. CRH can decrease NK cell migration in a time-/dose-dependent manner. Conclusion: These data suggest CRH can inhibit NK cell migration to target cells.

Influence of Curcumin on HOTAIR-Mediated Migration of Human Renal Cell Carcinoma Cells

  • Pei, Chang-Song;Wu, Hong-Yan;Fan, Fan-Tian;Wu, Yi;Shen, Cun-Si;Pan, Li-Qun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권10호
    • /
    • pp.4239-4243
    • /
    • 2014
  • Background: This study investigated the influence of curcumin on HOX transcript antisense RNA (HOTAIR)-mediated migration of cultured renal cell carcinoma (RCC) cells. Materials and Methods: Five RCC cell lines (769-P, 769-P-vector, 769-P-HOTAIR, 786-0, and Kert-3 ) were maintained in vitro. The expression of HOTAIR mRNA was determined by quantitative real-time PCR and cell migration was measured by transwell migration assay. The effects of different concentrations of curcumin (0 to $80{\mu}mol/L$) on cell proliferation was determined by the CCK-8 assay and influence of non-toxic levels (0 to $10{\mu}M$) on the migration of RCC cells was also determined. Results: Comparison of the 5 cell lines indicated a correlation between HOTAIR mRNA expression and cell migration. In particular, the migration of 769-P-HOTAIR cells was significantly higher than that of 769-P-vector cells. Curcumin at $2.5-10{\mu}M$ had no evident toxicity against RCC cells, but inhibited cell migration in a concentration-dependent manner. Conclusions: HOTAIR expression is correlated with the migration of RCC cells, and HOTAIR may be involved in the curcumin-induced inhibition of RCC metastasis.

Modulation of Glial and Neuronal Migration by Lipocalin-2 in Zebrafish

  • Kim, Ho;Lee, Shin-Rye;Park, Hae-Chul;Lee, Won-Ha;Lee, Myung-Shik;Suk, Kyoung-Ho
    • IMMUNE NETWORK
    • /
    • 제11권6호
    • /
    • pp.342-347
    • /
    • 2011
  • Background: Glial cells are involved in immune and inflammatory responses in the central nervous system (CNS). Glial cells such as microglia and astrocytes also provide structural and functional support for neurons. Migration and morphological changes of CNS cells are associated with their physiological as well as pathological functions. The secreted protein lipocalin-2 (LCN2) has been previously implicated in regulation of diverse cellular processes of glia and neurons, including cell migration and morphology. Methods: Here, we employed a zebrafish model to analyze the role of LCN2 in CNS cell migration and morphology in vivo. In the first part of this study, we examined the indirect effect of LCN2 on cell migration and morphology of microglia, astrocytes, and neurons cultured in vitro. Results: Conditioned media collected from LCN2-treated astrocytes augmented migration of glia and neurons in the Boyden chamber assay. The conditioned media also increased the number of neuronal processes. Next, in order to further understand the role of LCN2 in the CNS in vivo, LCN2 was ectopically expressed in the zebrafish spinal cord. Expression of exogenous LCN2 modulated neuronal cell migration in the spinal cord of zebrafish embryos, supporting the role of LCN2 as a cell migration regulator in the CNS. Conclusion: Thus, LCN2 proteins secreted under diverse conditions may play an important role in CNS immune and inflammatory responses by controlling cell migration and morphology.

Dexamethasone Disrupts Cytoskeleton Organization and Migration of T47D Human Breast Cancer Cells by Modulating the AKT/mTOR/RhoA Pathway

  • Meng, Xian-Guo;Yue, Shou-Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권23호
    • /
    • pp.10245-10250
    • /
    • 2015
  • Background: Glucocorticoids are commonly co-administered with chemotherapy to prevent drug-induced allergic reactions, nausea, and vomiting, and have anti-tumor functions clinically; however, the distinct effects of GC on subtypes of tumor cells, especially in breast cancer cells, are still not well understood. In this study, we aimed to clarify the effect of GC on subtypes of T47D breast cancer cells by focusing on apoptosis, cell organization and migration, and underluing molecular mechanisms. Materials and Methods: The cell scratch test was performed to observe the cell migration rate in T47D cells treated with dexamethasone (Dex). Hoechst and MTT assays were conducted to detect cell survival and rhodamine-labeled phalloidin staining to observe cytoskeleton dynamics. Related factors in the AKT/mTOR pathway were determined by Western blotting. Results: Dex treatment could effectively inhibit T47D breast cancer cell migration with disruption of the cytoskeletal dynamic organization. Moreover, the effect of Dex on cell migration and cytoskeleton may be mediated by AKT/mTOR/RhoA pathway. Although Dex inhibited T47D cell migration, it alone may not induce cell apoptosis in T47D cells. Conclusions: Dex in T47D human breast cancer cells could effectively inhibit cell migration by disrupting the cytoskeletal dynamic organization, which may be mediated by the AKT/mTOR/RhoA pathway. Our work suggests that glucocorticoid/Dex clinical use may prove helpful for the treatment of breast cancer metastasis.