• 제목/요약/키워드: Cell Matrix

검색결과 1,785건 처리시간 0.026초

FMS에서 기계셀과 부품그룹의 동시형성을 위한 통합모형 : 기계-공정 빈도행렬과 부품-공정 빈도행렬의 이용 (An Integrated Model for Simultaneous Formation of Machine Cells and Part Families in FMS : Using Machine- Operation Incidence Matrix and Part - Operation Incidence Matrix)

  • 정병희;윤창원
    • 경영과학
    • /
    • 제12권1호
    • /
    • pp.1-17
    • /
    • 1995
  • The success of cell manufacturing applications in FMS rests on the effective cell formation to maintain the independent relations both between machine cells and between part families. This paper presents an integrated method for concurrent formation of cells and families with no E.E (Exceptional Element) in FMS with alternative routings. To determine the maximum number of cell and family with no E.E, mathematical conditions and properties are derived. New concept of nonsimilarity is introduced for each machine and part based on machine-operation incidence matrix and part-operation incidence matrix. To concurrently form the cells and families, integer programming based mathematical models are developed. For the predetermined number of cell or family, model I is used to identify whether E.E exists or not. Model II forms cells and families considering only nonsimilarity. But model III can consider nonsimilarity and processing times. The proposed method is tested and proved by using numerical examples.

  • PDF

Regulation of Early Steps of Chondrogenesis in the Developing Limb

  • Kang, Shin-Sung
    • Animal cells and systems
    • /
    • 제12권1호
    • /
    • pp.1-9
    • /
    • 2008
  • In the developing limb, chondrogenesis is an important prerequisite for the formation of cartilage whose template is required for bone formation. Chondrogenesis is a tightly regulated multi-step process, including mesenchymal cell recruitment/migration, prechondrogenic condensation of the mesenchymal cells, commitment to the chondrogenic lineage, and differentiation into chondrocytes. This process is controlled exquisitely by cellular interactions with the surrounding matrix and regulating factors that initiate or suppress cellular signaling pathways and transcription of specific genes in a temporal-spatial manner. Understanding the cellular and molecular mechanisms of chondrogenesis is important not only in the context of establishing basic principle of developmental biology but also in providing research direction toward preventive and/or regenerative medicine. Here, I will overview the current understanding of cellular and molecular mechanisms contributing to prechondrogenic condensation processes, the crucial steps for chondrogenesis, focusing on cell-cell and cell-matrix interactions.

Investigation of Cell-Matrix Interactions Using a FRET Technique

  • Shahbuddin, Munira B.;Park, Hong-Hyun;Lee, Jae-Won;Park, So-Yeon;Lee, Kuen-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권8호
    • /
    • pp.1817-1820
    • /
    • 2009
  • Controlling cell-matrix interactions is critical in regulating cell phenotypes for tissue engineering applications. Cellular adhesion to synthetic extracellular matrices (ECMs) can be enhanced by introduction of adhesion ligands to the matrices. We tested the hypothesis that biophysical cues such as ligand organization in synthetic ECMs play an important role in modulating cell responses to the microenvironment. To investigate and monitor cell-matrix interactions, we used a fluorescence resonance energy transfer (FRET) technique with cell-interactive polymers generated by conjugating a peptide with the sequence of arginine-glycine-aspartic acid (RGD) to alginate hydrogels.

Engineering the Extracellular Matrix for Organoid Culture

  • Jeong Hyun Heo;Dongyun Kang;Seung Ju Seo;Yoonhee Jin
    • International Journal of Stem Cells
    • /
    • 제15권1호
    • /
    • pp.60-69
    • /
    • 2022
  • Organoids show great potential in clinical translational research owing to their intriguing properties to represent a near physiological model for native tissues. However, the dependency of organoid generation on the use of poorly defined matrices has hampered their clinical application. Current organoid culture systems mostly reply on biochemical signals provided by medium compositions and cell-cell interactions to control growth. Recent studies have highlighted the importance of the extracellular matrix (ECM) composition, cell-ECM interactions, and mechanical signals for organoid expansion and differentiation. Thus, several hydrogel systems prepared using natural or synthetic-based materials have been designed to recreate the stem cell niche in vitro, providing biochemical, biophysical, and mechanical signals. In this review, we discuss how recapitulating multiple aspects of the tissue-specific environment through designing and applying matrices could contribute to accelerating the translation of organoid technology from the laboratory to therapeutic and pharmaceutical applications.

자기조직화 신경망을 이용한 셀 형성 문제의 기계 배치순서 결정 알고리듬 (Machine Layout Decision Algorithm for Cell Formation Problem Using Self-Organizing Map)

  • 전용덕
    • 산업경영시스템학회지
    • /
    • 제42권2호
    • /
    • pp.94-103
    • /
    • 2019
  • Self Organizing Map (SOM) is a neural network that is effective in classifying patterns that form the feature map by extracting characteristics of the input data. In this study, we propose an algorithm to determine the cell formation and the machine layout within the cell for the cell formation problem with operation sequence using the SOM. In the proposed algorithm, the output layer of the SOM is a one-dimensional structure, and the SOM is applied to the parts and the machine in two steps. The initial cell is formed when the formed clusters is grouped largely by the utilization of the machine within the cell. At this stage, machine cell are formed. The next step is to create a flow matrix of the all machine that calculates the frequency of consecutive forward movement for the machine. The machine layout order in each machine cell is determined based on this flow matrix so that the machine operation sequence is most reflected. The final step is to optimize the overall machine and parts to increase machine layout efficiency. As a result, the final cell is formed and the machine layout within the cell is determined. The proposed algorithm was tested on well-known cell formation problems with operation sequence shown in previous papers. The proposed algorithm has better performance than the other algorithms.

Chiral Compound $[C_{24}H_{22}N_4O_4S]_2HCl$로 확인한 결정학적 단위포 변환시의 한 조언 (A Tip for Crystallographic Unit Cell Transformation Verified by a Chiral Compound $[C_{24}H_{22}N_4O_4S]_2HCl$)

  • Suh, Il-Hwan;Kim, Jin-Gyu;Park, Ji-Cheol;Park, Young-Soo;Park, Kyung-Lae
    • 한국결정학회지
    • /
    • 제11권2호
    • /
    • pp.89-94
    • /
    • 2000
  • A crystallographic unit cell can be transformed into another one by a 3×3 transformantion matrix. If the determinant of the transformation matrix has a negative value, the newly transformed unit cell becomes a left-handed cell. The best way of transforming the left-handed cell to the right-handed one is to multiply each element of the transformation matrix by-1, and its corresponding transformation matrix must be applied tot he atomic coordinates of a noncentrosymmetric crystal so as to maintain the absolute configuration unchanged. The behaviour of absolute configuration caused by transforming the crystallographic unit cell was examined theoretically and experimentally on the compound (S)-(+)-4-phenyl-1-[4-aminobenzoyl) indoline-5-sulfonyl]-4,5-dihydro-2-imidazolone hydrochloride.

  • PDF

소구경 폴리우레탄 인공혈관의 개발을 위한 세포외기질위의 혈관내피세포 배양 (Endothelial Cell Seeding Onto the Extracellular Matrix of Fibroblasts for the Developement of Small Diameter Polyurethane Vessel)

  • 박동국;이윤신
    • 대한의용생체공학회:의공학회지
    • /
    • 제16권1호
    • /
    • pp.1-8
    • /
    • 1995
  • A variety of experiments of endothelial cell seeding onto artificial vessels have been performed. To improve endothelialization, one or two components of the extracellular matrix (ECM) have been used as an underlying matrix. In this study, the whole ECM excreted from fibroblasts was used as an underlying matrix. Fetal human fibroblasts were cultured on a polyurethane (PU) sheet. After a conflu; ence was attained, the cytoskeleton and the nuclei of the fibroblast were destroyed using Triton-X. Mitomycin, or irradiation. Omental microvascular endothelial cells from adult human were seeded onto various substrates. After 12 days in culture, the cells were counted. It was observed that the ECM treated by irradiation had the highest cell number. In addition, the cells on this substrate exhibited the most typical endothelial cell morphology. For preliminary animal experiments the PU vessels (inner diameter, 1.5mm) coated with ECM were implanted in the infrarena] abdominal aorta of rat. After the vessels had been implanted for 5 weeks, it was found that the surface of the PU vessels was completely covered with endothelia] cells. In conclusion, we can state that the fibroblast-derived whole ECM makes a better underlying substrate for the endothelialization of small diameter artificial vessels.

  • PDF

FTA 체결에 대비한 임산물 경쟁력 수준과 수출전략품목 분석 (A Study on the Competitive Position of Korean Forest Products and Strategic Exportable Goods)

  • 장우환;권용덕
    • 한국산림과학회지
    • /
    • 제94권1호통권158호
    • /
    • pp.50-57
    • /
    • 2005
  • 이 연구는 일본 중국 아세안과의 FTA체결에 대비하여 우리나라 임산물 시장에서 경쟁력 수준을 파악하고 이를 통해 수출전략품목을 도출하는데 목정이 있다. 이르 위해 1999~2003년간 수입점유율과 수출경쟁력을 이용한 경쟁위치모형을 도출하여 국가간, 품목간 경쟁력 수준을 9가지로 유형화하고 수출전략 품목을 도출하였다. 분석결과, 우리나라의 수출전략 품목은 단기임산물의 경우 송이, 밤, 감, 대추 등이며, 임산물의 경우 섬유판, 마루판, 합판 목재 등이 도출되었다.

비휘발성 용매(NMP)를 사용한 인산형 연료전지(PAFC)용 전해질 매트릭스 제조 및 특성 (Preparation and Characteristics of a Matrix Retaining Electrolyte for a Phosphoric Acid Fuel Cell Using Non-volatile Solvent, NMP)

  • 윤기현;양병덕
    • 한국세라믹학회지
    • /
    • 제37권1호
    • /
    • pp.26-32
    • /
    • 2000
  • Preparation and characteristics of a matrix retaining electrolyte using SiC whisker, PES binder, and NMP(n-methyl-2-pyrrolidone) as a non-volatile solvent for a phosphoric acid fuel cell were investigated. The conditions of binder and plasticizer, and the effects of substituting a volatile solvent by a non-volatile solvent were also studied. The minimum amount of the binder was about 17 wt% for the proper bubble pressure and surrounding SiC whiskers. And the maximum amount of the plasticizer was about 10wt% to be fitted into the polymer chain of the binder. The matrix prepared by using a non-volatile solvent needed longer time to dry, and its pore size was smaller compared with that of the matrix prepared by using volatile solvent. The small pore size resulted in decrease of the overall pore volume. The ionic conductivity in the condition of the same thickness was decreased due to decrease of phosphoric acid absorbancy. As the internal resistance of the electrolyte increased, the fuel cell performance slightly decreased.

  • PDF