• Title/Summary/Keyword: Cell Cycle Arrest

Search Result 727, Processing Time 0.025 seconds

Effects of Amifostine on Apoptosis, Cell Cycle and Cytoprotection of Human Colon Cancer Cell Lines

  • Eun Ju Lee
    • Biomedical Science Letters
    • /
    • v.29 no.4
    • /
    • pp.287-295
    • /
    • 2023
  • Amifostine was developed to protect cells, but it is known to induce cytotoxicity and apoptosis, and the exact mechanism is unknown. In this study, we investigated how the DNA mismatch repair (MMR) system interacts with p53 to prevent apoptosis, cell cycle arrest, and cytoprotective effects induced by amifostine. HCT116 colon cancer cells sublines HCT116/p53+,HCT116/p53+, HCT116/p53-, HCT116/E6 and HCT116+ch3/E6 cells were used for evaluation. Amifostine induced G1 arrest and increased toxicity two-fold in p53- cells regardless of MMR expression. Both G1 cell cycle arrest and induction of p53 protein peaked at 24 h after the start of amifostine exposure. Both G1 cell cycle arrest and induction of p53 protein peaked at 24 h after the start of amifostine exposure. Amifostine induced the expression of p21 protein in both p53+ and p53- cells. As for apoptosis, compared to p53- cells, p53+ cells showed 3.5~4.2 times resistance to amifostine-induced apoptosis. HCT116+E6 with both p53 and MMR loss showed maximum apoptosis at 48 h, and HCT116+ch3/E6HCT116+ch3/E6 with p53 loss showed maximum apoptosis at 24 h. As a result, it was confirmed through in vitro experiments that amifostine-induced G1 cell cycle arrest and apoptosis are mediated through a pathway dependent on MMR and p53 protein.

Anticancer Effects of the Isoflavone Extract from Chungkukjang via Cell Cycle Arrest and Apoptosis in MDA-MB-453 Cells (청국장에서 얻은 Isoflavone의 MDA-MB-453세포에서 항암효과 및 관련 기전)

  • Shin, Jin Young;Kim, Taehee;Kim, An Keun
    • YAKHAK HOEJI
    • /
    • v.58 no.1
    • /
    • pp.33-39
    • /
    • 2014
  • The objective of this study is to evaluate the anticancer effects of the isoflavone extract from Chungkukjang in human breast cancer, MDA-MB-453 cells. For this study, MDA-MB-453 cells were treated with 12.5, 25, and $50{\mu}g$ isoflavone extract for 24, 48, and 72 hr. Cell proliferations were decreased in a time- and dose-dependent manner. Reduced cell proliferation was suspected by apoptosis or cell cycle arrest. Therefore, after treatment of $50{\mu}g$ isoflavone extract, apoptotic cells were investigated by annexin V staining. The results indicated that isoflavone extract increased the number of early apoptotic cells compared with control. Cleaved PARP was also increased. Next, we investigated the cell cycle and related proteins. The isoflavone extract leads to cell cycle arrest at the G2/M phase. Moreover isoflavone extract had influenced cell cycle relate proteins such as cyclin B1, cyclin A, and p21. These results suggest that isoflavone extract from Chungkukjang induce apoptosis and cell cycle arrest at G2/M phase via regulation of cell cycle-related proteins in MDA-MB-453 cells.

Cadmium Induces Cell Cycle Arrest and Change in Expression of Cell Cycle Related Proteins in Breast Cancer Cell Lines

  • Lee Young Joo;Kang Tae Seok;Kim Tae Sung;Moon Hyun Ju;Kang Il Hyun;Oh Ji Young;Kwon Hoonjeong;Han Soon Young
    • Toxicological Research
    • /
    • v.21 no.1
    • /
    • pp.77-85
    • /
    • 2005
  • Cadmium is an environmental pollutant exposed from contaminated foods or cigarette smoking and known to cause oxidative damage in organs. We investigated the cadmium-induced apoptosis and cell arrest in human breast cancer cells, MCF-7 cells and MDA-MB-231 cells. Obvious apoptotic cell death was shown in CdCl₂ 100 μM treatment for 12 hr, which were determined by DAPI staining and flow cytometric analysis. In cell cycle analysis, MCF-7 cells and MDA-MB-231 cells were arrested in S phase and G2/M phase respectively. These could be explained by the induction of cell cycle inhibitory protein, p21/sup Waf1/Cip1/ and p27/sup Kip1/, expression and reduction of cyclin/Cdk complexes in both cell lines. The decreased expression of cyclin A and Cdk2 in MCF-7 cells and cyclin B1 and Cdc2 in MDA-MB-231 cells were consistent with the flow cytometric observation. p-ERK expression was increased dose-dependent manner in both cell lines. It suggests that ERK MAPK pathway are involved in cadmium-induced cell cycle arrest and apoptosis. Moreover, cotreatment of zinc (100 μM, 12 hr) recovered the cadmium-induced cell arrest in both cells, which shows cadmium-induced oxidative stress mediates apoptosis and cell cycle arrest in human breast cancer cells.

Heme Oxygenase-l Induced by Aprotinin Inhibits Vascular Smooth Muscle Cell Proliferation Through Cell Cycle Arrest in Hypertensive Rats

  • Choi, Hyoung-Chul;Lee, Kwang-Youn;Lee, Dong-Hyup;Kang, Young-Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.4
    • /
    • pp.309-313
    • /
    • 2009
  • Spontaneous hypertensive rats (SHR) are an established model of genetic hypertension. Vascular smooth muscle cells (VSMC) from SHR proliferate faster than those of control rats (Wistar-Kyoto rats; WKY). We tested the hypothesis that induction of heme oxygenase (HO)-1 induced by aprotinin inhibits VSMC proliferation through cell cycle arrest in hypertensive rats. Aprotinin treatment inhibited VSMC proliferation in SHR more than in normotensive rats. These inhibitory effects were associated with cell cycle arrest in the G1 phase. Tin protoporphyrin IX (SnPPIX) reversed the anti-proliferative effect of aprotinin in VSMC from SHR. The level of cyclin D was higher in VSMC of SHR than those of WKY. Aprotinin treatment downregulated the cell cycle regulator, cyclin D, but upregulated the cyclin-dependent kinase inhibitor, p21, in VSMC of SHR. Aprotinin induced HO-1 in VSMC of SHR, but not in those of control rats. Furthermore, aprotinin-induced HO-1 inhibited VSMC proliferation of SHR. Consistently, VSMC proliferation in SHR was significantly inhibited by transfection with the HO-1 gene. These results indicate that induction of HO-1 by aprotinin inhibits VSMC proliferation through cell cycle arrest in hypertensive rats.

Kaempferol induced the apoptosis via cell cycle arrest in human breast cancer MDA-MB-453 cells

  • Choi, Eun-Jeong;Ahn, Woong-Shick
    • Nutrition Research and Practice
    • /
    • v.2 no.4
    • /
    • pp.322-325
    • /
    • 2008
  • The aim of present study was to investigate the effects of kaempferol on cellular proliferation and cell cycle arrest and explore the mechanism for these effects in human breast carcinoma MDA-MB-453 cells. Cells were treated with kaempferol at various concentrations (ranging from 1 to $200\;{\mu}M$) for 24 and 48 hrs. Kaempferol significantly inhibited cancer cell growth in cells exposed to 50 and $10\;{\mu}M$ of kaempferol and incubated for 24 and 48 hrs, respectively. Exposure to kaempferol resulted in cell cycle arrest at the G2/M phase. Of the G2/M-phase related proteins, kaempferol down-regulated CDK1 and cyclin A and B in cells exposed to kaempferol. In addition, small DNA fragments at the sub-G0 phase were increased by up to 23.12 and 31.90% at 10 and $50\;{\mu}M$ incubated for 24 and 48 hrs, respectively. The kaempferol-induced apoptosis was associated with the up-regulation of p53. In addition, the phosphorylation of p53 at the Ser-15 residue was observed with kaempferol. Kaempferol inhibits cell proliferation by disrupting the cell cycle, which is strongly associated with the induction of arrest at G2/M phase and may induce apoptosis via p53 phosphorylation in human breast carcinoma MDA-MB-453 cells.

Growth Inhibitory Activity of Honokiol through Cell-cycle Arrest, Apoptosis and Suppression of Akt/mTOR Signaling in Human Hepatocellular Carcinoma Cells

  • Hong, Ji-Young;Park, Hyen Joo;Bae, KiHwan;Kang, Sam Sik;Lee, Sang Kook
    • Natural Product Sciences
    • /
    • v.19 no.2
    • /
    • pp.155-159
    • /
    • 2013
  • Honokiol, a naturally occurring neolignan mainly found in Magnolia species, has exhibited a potential anti-proliferative activity in human cancer cells. However, the growth inhibitory activity against hepatocellular carcinoma cells and the underlying molecular mechanisms has been poorly determined. The present study was designed to examine the anti-proliferative effect of honokiol in SK-HEP-1 human hepatocellular cancer cells. Honokiol exerted anti-proliferative activity with cell-cycle arrest at the G0/G1 phase and sequential induction of apoptotic cell death. The cell-cycle arrest was well correlated with the down-regulation of checkpoint proteins including cyclin D1, cyclin A, cyclin E, CDK4, PCNA, retinoblastoma protein (Rb), and c-Myc. The increase of sub-G1 peak by the higher concentration of honokiol ($75{\mu}M$) was closely related to the induction of apoptosis, which was evidenced by decreased expression of Bcl-2, Bid, and caspase-9. Hohokiol was also found to attenuate the activation of signaling proteins in the Akt/mTOR and ERK pathways. These findings suggest that the anti-proliferative effect of honokiol was associated in part with the induction of cell-cycle arrest, apoptosis, and dow-nregulation of Akt/mTOR signaling pathways in human hepatocellular cancer cells.

Anticancer and Signaling Mechanisms of Biologically Active Substances from Orostachys japonicus through Arrest of Cell cycle in Human Melanoma Cells (인체 흑색종 세포에 대한 와송 추출물의 세포주기 억제를 통한 항암효과와 기전 연구)

  • Ryu, Deok-Hyun;Ryu, Deok-Seon
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.32 no.4
    • /
    • pp.1-12
    • /
    • 2019
  • Objectives : The purpose of this study was to identify the anticancer effect of biological substances of ethylacetate(EtOAc) fraction from Orostachys japonicus(OJEF), their effect on human melanoma A375 cells and the related molecular mechanisms. Methods : The MTS assay was used to confirm the inhibition of cancer cell proliferation in A375 cells. And the $MUSE^{TM}$ analyzer was used to determine the ability of OJEF to induce cell cycle arrest. Western blotting was used to determine the changes in protein expression in A375 cells after treatment with OJEF. Results : OJEF showed cytotoxicity to A375 cells. And cell cycle arrest occurred in G1 phase and G2/M phase owing to inhibition of CDK1, cyclin B1, CDK4, and cyclin D, which are related to cell cycle regulation and cell division control. Conclusion : OJEF is effective in regulating cell cycle of human melanoma cells and thus can be a good theraputic agent to treat patients with melanoma.

S Phase Cell Cycle Arrest and Apoptosis is Induced by Eugenol in G361 Human Melanoma Cells

  • Rachoi, Byul-Bo;Shin, Sang-Hun;Kim, Uk-Kyu;Hong, Jin-Woo;Kim, Gyoo-Cheon
    • International Journal of Oral Biology
    • /
    • v.36 no.3
    • /
    • pp.129-134
    • /
    • 2011
  • Eugenol is an essential oil found in cloves and cinnamon that is used widely in perfumes. However, the significant anesthetic and sedative effects of this compound have led to its use also in dental procedures. Recently, it was reported that eugenol induces apoptosis in several cancer cell types but the mechanism underlying this effect has remained unknown. In our current study, we examined whether the cytotoxic effects of eugenol upon human melanoma G361 cells are associated with cell cycle arrest and apoptosis using a range of methods including an XTT assay, Hoechst staining, immunocyto-chemistry, western blotting and flow cytometry. Eugenol treatment was found to decrease the viability of the G361 cells in both a time- and dose-dependent manner. The induction of apoptosis in eugenol-treated G361 cells was confirmed by the appearance of nuclear condensation, the release of both cytochrome c and AIF into the cytosol, the cleavage of PARP and DFF45, and the downregulation of procaspase-3 and -9. With regard to cell cycle arrest, a time-dependent decrease in cyclin A, cyclin D3, cyclin E, cdk2, cdk4, and cdc2 expression was observed in the cells after eugenol treatment. Flow cytometry using a FACScan further demonstrated that eugenol induces a cell cycle arrest at S phase. Our results thus suggest that the inhibition of G361 cell proliferation by eugenol is the result of an apoptotic response and an S phase arrest that is linked to the decreased expression of key cell cycle-related molecules.

Aspergillus fumigatus-derived demethoxyfumitremorgin C inhibits proliferation of PC3 human prostate cancer cells through p53/p21-dependent G1 arrest and apoptosis induction

  • Kim, Young-Sang;Park, Sun Joo
    • Fisheries and Aquatic Sciences
    • /
    • v.24 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • Human prostate cancer is the second most frequently diagnosed cancer worldwide, and its incidence rate continues to increase. Advanced prostate cancer is more difficult to treat than early forms due to its chemotherapy resistance. There is need for more effective agents that can inhibit the progression of advanced prostate cancer. Demethoxyfumitremorgin C (DMFTC) was isolated from the fermentation extract of the marine fungus Aspergillus fumigatus. Antiproliferative activity of DMFTC against human prostate cancer PC3 cells was examined through cell cycle analysis by flow cytometry, the fluorescent nuclear imaging analysis with propidium iodide (PI), and proteins expression related to cell cycle arrest and apoptosis were investigated via Western blotting. DMFTC inhibited PC3 cells growth through G1 phase cell cycle arrest and apoptosis induction. It activated the tumor suppressor p53 and the Cdk inhibitor p21, which regulate the cell progression into the G1 phase. Additionally, PI-positive late apoptotic non-viable cells were increased and the expression levels of the G1-positive downstream regulators cyclin D, cyclin E, Cdk2, and Cdk4 were decreased by DMFTC treatment. These results suggest that DMFTC induces G1 arrest and apoptosis induction through regulation of p53/p21-dependent cyclin-Cdk complexes, and it may be a useful therapeutic agent for the treatment of human advanced prostate cancer.

NADPH oxidase inhibitor diphenyleneiodonium induces p53 expression and cell cycle arrest in several cancer cell lines (NADPH oxidase 저해제인 diphenyleneiodonium의 p53 발현 및 암세포의 성장억제에 대한 연구)

  • Jo, Hong-Jae;Kim, Kang-Mi;Song, Ju-Dong;Park, Young-Chul
    • Journal of Life Science
    • /
    • v.17 no.6 s.86
    • /
    • pp.778-782
    • /
    • 2007
  • The Diphenyleneiodonium (DPI) is widely used as an inhibitor of flavoenzymes, particularly NADPH oxidase. In this study, we investigated the effect of DPI on the cell growth progression of human colon cancer cells HCT-116 (wild-type p53), HT-29 (p53 mutant) and human breast cancer cells MCF-7 (wild-type p53). DPI treatment in cancer cells evoked a dose- and time-dependent growth inhibition, and also induced the cell cycle arrest in C2/M phase. The peak of cell population arrested in C2/M phase was observed at12 hr after treatment of DPI. In addition, DPI significantly induced the expression of p53, which induces proapoptotic genes in response to DNA damage or irreparable cell cycle arrest, at 6 hr in DPI-stimulated cells. However, a catechol apocynin, which inhibits the assembly of NADPH oxidase, did not induce p53 expression. This suggest that p53 expression induced by DPI is not associated with the inhibition of NADPH oxidase. In conclusion, we suggest that DPI induces the expression of wild-type p53 by ROS-in-dependent mechanism in several cancer cells, and upregulated p53 may be involved in regulatory mechanisms for growth inhibition and cell cycle arrest at C2/M phase in DPI-stimulated cells.