• 제목/요약/키워드: Cell Crack

검색결과 115건 처리시간 0.027초

$LiNbO_3$단결정에 미치는 CZ 성장조건의 영향 (Effects of the Czochralski growth parameters on the growth of $LiNbO_3$ crystals)

  • 이상학;윤의박
    • 한국재료학회지
    • /
    • 제2권1호
    • /
    • pp.52-57
    • /
    • 1992
  • 용응인상법에 의해 융성시킨 $LiNbO_3$ 단결정의 거시적 결함은 단결정 육성인자인 성장속도, 온도구배 및 결정회전속도에 강하게 영향을 받았다. Cell 구조가 형성되지 않고 결정의 직경제어가 용이하며 결정성장 후 냉각시 에도 crack이 발생되지 않는 1" 직경의 $LiNbO_3$ 단결정의 성장조건은 온도기울기 $70~100^{circ}C/cm$, 성장속도 5~10 mm/hr, 결정회전속도 40 rpm 이었다. 이었다.

  • PDF

SiO2 나노 콜로이달 첨가량에 따른 Si3N4의 고온강도 특성 (Characterization of High Temperature Strength of Si3N4 Composite Ceramics According to the Amount of SiO2 Nano Colloidal Added)

  • 남기우;이건찬
    • 대한기계학회논문집A
    • /
    • 제33권11호
    • /
    • pp.1233-1238
    • /
    • 2009
  • This study analyzed the characterization of high temperature strength of $Si_3N_4$ composite ceramics additive based on variations in the amount of nano colloidal $SiO_2$ added. Semi-elliptical cracks about 100 ${\mu}m$ length were obtained from a Vickers indenter using a load of 24.5 N. The results showed that the heat-treated smooth specimens with $SiO_2$ nano colloidal coating exhibited the highest bending strength at 0.0 wt% $SiO_2$ nano colloidal added, which is amounted to a 187 % increase over that of smooth specimen. Limiting temperature for bending strength of crack-healed zone for bending strength was about 1273 K. However, the bending strength of SSTS-3 and SSTS-4 was considerably increased while that of SSTS-1 and SSTS-2 was decreased at a temperature of 1,573K.

Reinforced concrete beams under drop-weight impact loads

  • May, Ian M.;Chen, Yi;Owen, D. Roger J.;Feng, Y.T.;Thiele, Philip J.
    • Computers and Concrete
    • /
    • 제3권2_3호
    • /
    • pp.79-90
    • /
    • 2006
  • This paper describes the results of an investigation into high mass-low velocity impact behaviour of reinforced concrete beams. Tests have been conducted on fifteen 2.7 m or 1.5 m span beams under drop-weight loads. A high-speed video camera has been used at rates of up to 4,500 frames per second in order to record the crack formation, propagation, particle spallation and scabbing. In some tests the strain in the reinforcement has been recorded using "Durham" strain gauged bars, a technique developed by Scott and Marchand (2000) in which the strain gauges are embedded in the bars, so that the strains in the reinforcement can be recorded without affecting the bond between the concrete and the reinforcement. The impact force acting on the beams has been measured using a load cell placed within the impactor. A high-speed data logging system has been used to record the impact load, strains, accelerations, etc., so that time histories can be obtained. This research has led to the development of computational techniques based on combined continuum/discontinuum methods (finite/discrete element methods) to permit the simulation of impact loaded reinforced concrete beams. The implementation has been within the software package ELFEN (2004). Beams, similar to those tested, have been analysed using ELFEN a good agreement has been obtained for both the load-time histories and the crack patterns.

콘크리트 중의 철근 부식 억제를 위한 외부전원법의 효과 (Effect of Impressed Current System for Corrosion Protection of Rebars in Concrete)

  • 문한영;김성수;김홍삼
    • 콘크리트학회지
    • /
    • 제11권2호
    • /
    • pp.221-230
    • /
    • 1999
  • 콘크리트 구조물에 균열이 생겨 물과 산소의 침투확산이 용이해 지거나 또는 외부로부터 염소이온과 같은 염화물이 침투확산되어 콘크리트 중의 철근까지 도달할 경우 및 콘크리트의 중성화가 철근위치까지 진행될 경우 철근의 부동태 피막은 파괴되어 부식이 급진전 되며 콘크리트의 박리 및 탈락현상이 수반될 뿐만 아니라 구조물의 내구성이 크게 저하된다. 본 연구에서는 콘크리트 중의 철근부식을 억제하기 위한 한 방안으로 적용되는 전기방식의 이론적인 고찰과 콘크리트 내부에 다량의 염화물을 함유시키거나 또는 균열을 발생시킨 시험체에 대하여 외부전원법을 활용한 실내실험을 실시하여 철근의 방식효과에 대해 고찰하였다. 외부전원법에 의한 전기방식을 실시하여 복극량을 측정한 결과 대상 시험체 모두 NACE의 방식기준을 만족하였으며, 부식면적율의 측정결과 34 ~84%, 단면감소의 경우 84 ~ 86%의 방식효과를 확인하였다.

Turbine Blade재료의 부식민감성과 부식피로특성에 관한 연구 (A Study on the Corrosion Susceptibility and Corrosion Fatigue Characteristics on the Material of Turbine Blade)

  • 조선영;김철한;류승우;김효진;배동호
    • 대한기계학회논문집A
    • /
    • 제24권3호
    • /
    • pp.603-612
    • /
    • 2000
  • Corrosion characteristics on the 12Cr alloy steel of turbine blade was electro-chemically investigated in 3.5wt% NaCI and 12.7wt% Na2S04 solution, respectively. Electro-chemical polarization test, Huey test and Oxalic acid etching test were previously conducted to estimate corrosion susceptibility of the material. And, using the horizontal corrosion fatigue tester, corrosion fatigue characteristics of 12Cr alloy steel in distilled water, 3.5wt% NaCI solution, and 12.7wt%(1M) Na2S04 solution were also fracture-mechanically estimated and compared their results. Parameter considered was room temperature, 60'C and 90'C. Corrosion fatigue crack length was measured by DC potential difference method.Obtained results are as follows,1) 12Cr alloy steel showed high corrosion rate in 3.5wt% NaCI solution and Na2S04 solution at high tempratue.2) Intergranular corrosion sensitivity of 12 Cr alloy was smaller than austenitic stainless steel.3) Corrosion fatigue crack growth rate in 3.5wt% NaCI and 12.7wt%(IM) Na2S04 solution is entirely higher than in the distilled water, and also increased with the temperature increase.

접착제로 접합된 이중외팔보 알루미늄폼의 파괴 거동에 관한 연구 (Fracture Behavior of Adhesive-Bonded Aluminum Foam with Double Cantilever Beam)

  • 방혜진;이상교;조종두;조재웅;최해규
    • 대한기계학회논문집A
    • /
    • 제38권5호
    • /
    • pp.521-526
    • /
    • 2014
  • 본 논문에서는 초기균열을 갖고 있는 폐포형 구조, 발포알루미늄의 축방향 기계적 거동을 실험 및 유한요소해석으로 연구하였다. 재료시험에서 MTS 사의 10kN Landmarks 를 사용하여, 모드 I 형상의 15mm/min 의 하중속도로 변위를 제어하였다. 또한 유한요소해석 범용프로그램인 ABAQUS 6.10 으로 3 차원 형상의 실험과 동일한 조건으로 모델을 구성하여 해석을 수행하였다. 실험의 축방향 변위-하중 그래프와 시간에 대한 균열 길이를 기반으로 에너지 해방률을 계산하였으며, 이 값을 해석에서 파손 에너지 조건으로 사용하였다. 결과적으로 변위 값에 따른 하중 거동을 확인할 수 있었으며, 발포알루미늄이 접착제에 비해 상대적으로 큰 밀도와 탄성계수를 가지므로 발포알루미늄의 변형이 상대적으로 작다는 것을 확인할 수 있었다.

CMC+PTFE 혼합바인더 전극의 제조 및 전기화학적 특성 (Fabrication of CMC+PTFE Electrode and it's Electrochemical Performances)

  • 김익준;이선영;문성인
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.2
    • /
    • pp.1248-1253
    • /
    • 2004
  • This work describes the effect of electrode binder on the characteristics of electric double layer capacitor Among carboxymethylcellulose (CMC), Polyvinylpyrrolidone (PVP), Polyvinyl Alcohol (PVA), and Polyvinylidene Fluoride (PVDF), the unit cell using CMC showed good rate capability between $2.5mA/cm^2{\sim}100mA/cm^2$ current density. However, CMC as a binder is incongruent, because the electrode bound with CMC is rigid and easy to crack during a press and winding process for fabrication of capacitor. The unit cell capacitor using the electrode bound with binary binder composed of CMC and Polytetrafluoroethylene (PTFE), especially in composition CMC : PTFE : 60 : 40 wt.%, has exhibited the better mechanical properties than those of the unit cell with CMC. On the other hand, it was also noted that the mechanical properties of CMC+PTFE electrode, coated on underlayer composed of CMC and carbon black, were much improved the binding force.

  • PDF

EDLC용 CMC+PTFE 혼합바인더 전극의 전기적, 기계적 특성 (Electric and Mechanical Properties of CMC+PTFE Binary Binder Electrode for Electric Double Layer Capacitor)

  • 김익준;이선영;문성인
    • 한국전기전자재료학회논문지
    • /
    • 제17권10호
    • /
    • pp.1079-1084
    • /
    • 2004
  • This work describes the effect of electrode binder on the characteristics of electric double layer capacitor. Among carboxymethylcellulose (CMC), Polyvinylpyrrolidone (PVP), Polyvinyl Alcohol (PVA), and Polyvinylidene Fluoride (PVDF), the unit cell using CMC showed good rate capability at current densities between 2.5 mA/$\textrm{cm}^2$~100 mA/$\textrm{cm}^2$. However, CMC as a binder is incongruent, because the electrode bound with CMC is rigid and easy to crack during a press and winding process for fabrication of capacitor. The unit cell capacitor using the electrode bound with binary binder composed of CMC and Polytetrafluoroethylene (PTFE), especially in composition CMC : PTFE =60 : 40 wt.%, has exhibited the better mechanical properties than those of the unit cell with CMC. On the other hand, the mechanical properties of CMC+PTFE electrode, coated on underlayer composed of CMC and carbon black, were much improved.

The Relationship Between Hydrogen Trapping Behavior and SSCC Suceptibility of API X60/65 Grade Steels

  • Lee, Jae Myung;Kim, Jin Suk;Kim, Kyoo Young
    • Corrosion Science and Technology
    • /
    • 제2권3호
    • /
    • pp.109-116
    • /
    • 2003
  • It is well known that SSCC (sulfide stress corrosion cracking) is caused by drastic ingression of hydrogen during the service and accumulation of hydrogen near the potential crack initiation site in the material. It is important to characterize the hydrogen trapping behavior to evaluate the service performance of the high strength pipeline steels. In this study. the relationship between the hydrogen trapping behavior and SSCC susceptibility is evaluated in terms of alloy composition, microstructure and carbide behavior. The hydrogen trapping behavior was measured by electrochemical hydrogen permeation test cell (Devanathan cell). The SSCC susceptibility is evaluated by constant extension rate test and constant strain lest method. The hydrogen trapping behavior is affected greatly by microstructure and nature of carbide particles. The fine TiC, and NbC in the matrix of ferritic structure acts as strong irreversible trap sites whereas the bainitic structure acts as reversible trap site. The SSCC susceptibility is closely related to not only the hydrogen trapping behavior but also the loading condition. As the activity of reversible trap site increases, SSCC susceptibility decreases under static loading condition below yield strength, whereas SSCC susceptibility increases under dynamic loading condition or above yield strength. As the activity of irreversible trap site increases. SSCC susceptibility increases regardless of loading condition. It is cased by the mixed effect of dislocation on hydrogen diffusion and trapping behavior.

평관형 고체 산화물 연료전지의 연료극 지지체 NiO/YSZ의 환원 및 재산화 거동 특성 (Redox Behaviors of NiO/YSZ Anode Tube in Anode-Supported Flat Tubular Solid Oxide Fuel Cells)

  • 송락현;이길용;신동열
    • 한국수소및신에너지학회논문집
    • /
    • 제17권1호
    • /
    • pp.82-89
    • /
    • 2006
  • The redox behaviors of anode-supported flat tube for solid oxide fuel cell has been studied. The mass change of the extruded NiO/YSZ anode flat tube during redox cycling was examined by thermogravimetric analysis(TGA). The result of TGA was shown a rapidly mass change in the range of $455\;-\;670^{\circ}C$ and the reoxidation of the NiO/YSZ anode was almost completed at $750^{\circ}C$. The starting temperature of reoxidation and the maximum temperature of oxidation rate decreased with increasing the reoxidation cycle, which is attributed to the increased porosity caused by volume change. Bending strengths of the NiO/YSZ anode after redox cycling were 96 - 80 MPa and the bending strength decreased slightly with increasing the redox cycle. On the other hand, the bending strength of the NiO/YSZ anode with electrolyte showed 130 MPa after first redox cycling but decreased rapidly with increasing the redox cycle. From the results of the bending test and the microstructure observation, we conclude that the crack initiation of the electrolyte-coated NiO/YSZ anode was induced easily at interface of electrolyte/anode tube and propagated cross the electrolyte.