• 제목/요약/키워드: Cell Crack

검색결과 116건 처리시간 0.029초

실리콘 웨이퍼 마이크로크랙을 위한 대표적 분류 기술의 성능 평가에 관한 연구 (A Study on Performance Evaluation of Typical Classification Techniques for Micro-cracks of Silicon Wafer)

  • 김상연;김경범
    • 반도체디스플레이기술학회지
    • /
    • 제15권3호
    • /
    • pp.6-11
    • /
    • 2016
  • Silicon wafer is one of main materials in solar cell. Micro-cracks in silicon wafer are one of reasons to decrease efficiency of energy transformation. They couldn't be observed by human eye. Also, their shape is not only various but also complicated. Accordingly, their shape classification is absolutely needed for manufacturing process quality and its feedback. The performance of typical classification techniques which is principal component analysis(PCA), neural network, fusion model to integrate PCA with neural network, and support vector machine(SVM), are evaluated using pattern features of micro-cracks. As a result, it has been confirmed that the SVM gives good results in micro-crack classification.

결정질 태양전지모듈의 외부 응력에 따른 장기적 내구성 예측 (The Durability Estimation of Crystalline PV Module according to Mechanical Stress)

  • 김경수;강기환;유권종
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.35-36
    • /
    • 2008
  • In this paper, we studied the long term durability estimation for crystalline photovoltaic module while exposing to mechanical stress. Solar cell and PV module have many different kinds of stresses from cell to module fabrication. For this reason, some solar cell shows micro crack that decrease crystallization. In here, we expose artificial mechanical load on surface of PV module. Through this, the periodic external force on PV module might give an negative effect. The further analysis is described in the following paper.

  • PDF

부식 저항성 평가에 따른 균열 콘크리트 보의 부식전위 연구 (A Study on Corrosion Potential of Cracked Concrete Beam According to Corrosion Resistance Assessment)

  • 송하원;이창홍;이근주
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제13권1호통권53호
    • /
    • pp.97-105
    • /
    • 2009
  • 건설산업에서 혼합콘크리트의 개발 및 사용은 내구성 측면에서의 공극구조개선 및 투수성 감소등의 확장 연구를 통해 나날이 증가하고 있는 실정이다. 한편, 콘크리트내의 균열은 투수성, 염해 침투속도 및 압축강도등을 결정하는 중요한 인자이며, 이는 철근의 부식과도 밀접한 관련을 가지는 것으로 알려져 있다. 더욱이 콘크리트 구조물의 피복두께에 균열이 발생한 경우, 이를 통해 철근 부식이 가속화됨은 주지의 사실이다. 최근에 콘크리트내의 침투를 고려한 균열효과와 관련하여 다수의 연구가 수행되어져 온 것이 사실이며, 그에 따라 내구성을 고려한 균열 혼합콘크리트의 사용수명 평가에 관한 연구도 필요한 것이 사실이다. 본 연구에서는 0.3mm의 균열을 변수로 두고, OPC, 30% PFA, 60% GGBS 및 10% SF의 결합재를 혼입하여 사용한 혼합콘크리트보의 부식평가를 자연 및 인공 환경조건에 맞추어 반전지전위측정시험, 갈바닉전류측정시험, 무게감량법등으로 측정 및 비교분석하였다.

롤투롤 공정의 인쇄 후 구간에서 변형률과 인쇄한 패턴의 전기 전도도와의 관계에 대한 연구 (A study on the Relation between Strain & Conductivity of the Printed Pattern in Post-Printing Section of Roll to Roll process)

  • 최재호;이창우;신기현
    • 제어로봇시스템학회논문지
    • /
    • 제15권9호
    • /
    • pp.877-880
    • /
    • 2009
  • A curing process in post-printing section of R2R process is required for an electrical property of the printed pattern when devices such as RFID, Solar cell are printed. PEN as well as heat-stabilized PET which is used as a plastic substrate would be deformed at high temperature due to change of its elastic modulus. And crack in the printed pattern, which is on the plastic substrate is occurred due to the deformation of the substrate. The occurrence of crack causes electrical resistance to increase and the quality of the device to deteriorate. In case of RFID antenna, the range of reading distance is shortened as the electrical resistance of the antenna is increased. Therefore, the deformation of the plastic substrate, which causes the occurrence of crack, should be minimized by setting up low operating tension in R2R process. In low tension, slippage between a moving substrate and a roller would be generated when the operating speed is increased. And scratch would be occurred when slippage is generated due to an air entrainment, which is related to the thickness of the air film. The thickness of the air film is increased when operating speed is increased as shown by simulation based on mathematical model. The occurrence of scratch in conductive pattern printed by roll to roll process is a critical damage because it causes degradation or failure of electrical property of it.

관형 고체산화물연료전지 테스트 지그 최적화 (Optimal Design for Tubular SOFC Testing Jig)

  • 최훈;안권성;신창우;차석원
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.303-306
    • /
    • 2009
  • High temperature solid oxide fuel cells (SOFCs) offer a clean, pollution-free technology to electrochemically generate electricity at high efficiencies. Solid oxide fuel cells in several different designs have been investigated; these include planar and tubular geometries. The tubular type cell is widely researched due to it have advantages about thermal expansion and sealing issues. Unfortunately, lab scale tubular cell for testing has thermal expansion and sealing problems. The previous Jig for lab scale tubular cell testing has many sealing problems. When we feed fuel gas to jig inlet, ceramic glue sealant has amount of gas expansion pressure, because temperature of feeding gas changes ambient temperature to high temperature ($700{\sim}900^{\circ}C$). Furthermore, when we carry out long time test, something like degradation test, crack of ceramic glue sealant due to weakness of mechanical properties can make stop working the test. Additionally, we reduce setting process for assembling, because micanite is not required drying or debinding process.

  • PDF

AZ31B 마그네슘 판재의 원형 및 사각형 동시변형 공정에서 블랭크 홀딩력이 두께변화에 미치는 영향 (The Effect of Blank Holding Force on Thickness Variation in Simultaneous Sheet forming process with Circle and Rectangle Shape of AZ31B Magnesium Sheet)

  • 권기태;강석봉;김현호;강충길
    • 소성∙가공
    • /
    • 제18권7호
    • /
    • pp.531-537
    • /
    • 2009
  • The effect of blank holding force on thickness variation in simultaneous sheet forming with rectangular shape and circular has been demonstrated. Because has investigated an effect on formability of magnesium sheet, in this paper, the effect of punch radius on formability have been thinning, various crack phenomena and forming velocity. By simultaneously forming process with circular and rectangular shape, the data of simultaneously forming process with circular and rectangular shape will used to a part development such as notebook computer case, cell phone and bipolar plate of fuel cell.

피로하중을 받는 해양 콘크리트의 내구성 연구 (DURABILITY TESTING OF MARINE REINFORCED CONCRETE UNDER FATIGUE LOADING, PART I AND II)

  • 안우석
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1996년도 봄 학술발표회 논문집
    • /
    • pp.348-353
    • /
    • 1996
  • This study addresses the evaluation of the durability of reinforced concrete marine structures subjected to fatigue loading. The laboratory investigation was carried out on full and half size reinforced concrete specimens with three different water cement ratios (0.3, 0.4, and 0.56), static and fatigue loading conditions, and epoxy-coated and regular black steel reinforcements. The marine tidal zone was simulated by alternate filling and draining of the tank (wet and dry cycled), and a galvanostatic corrosion technique to accelerate corrosion of reinforcement was used. Half-cell potentials and changes of crack width were measured periodically during the exposure and followed by ultimate strength testing. The significant findings include adverse effect of fatigue loading, existence of an explicit size effect, poor performance of epoxy coated steel, and negative effect of increasing water/cement ratio.

  • PDF

Fabrication of Large-Area Photovoltaic Crystal with Modified Surface Using Trimethoxysilyl Propyl Methacrylate (TMSPM) for Solar Cell Protection

  • Kang, Kwang-Sun
    • Current Photovoltaic Research
    • /
    • 제2권3호
    • /
    • pp.84-87
    • /
    • 2014
  • Protection of solar cell surface is important to prevent from dust, pollen, sand, etc. Therefore, development of large area antifouling film is urgent for high performance of solar cells. The surface of silica spheres was modified to fabricate large area antifouling film. The surface of monodisperse silica spheres has been modified with 3-(trimethoxysilyl) propylmethacrylate (TMSPM) to fabricate large area photonic crystal. Although the surface modification of silica spheres with TMSPM has been failed for the base catalyst, the second trial using acid catalyst showed the following results. The FTIR absorption peak at $1721cm^{-1}$ representing C=O stretching vibration indicates that the TMSPM was attached on the surface of silica spheres. The methanol solution comprised of the surface modified silica spheres (average diameter of 380 nm) and a photoinitiator was poured in the patterned silicon wafer with the dimension of 10 cm x 10 cm and irradiated UV-light during the self-assembly process. The result showed large area crack and defect free nanostructures.

외부전원법을 적용한 철근콘크리트의 방식효과 (The Method Effect of Reinforced Concrete by Applying Impressed Current Cathodic Protection)

  • 이해승;조규환;박동천
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2013년도 추계 학술논문 발표대회
    • /
    • pp.60-61
    • /
    • 2013
  • For reinforced concrete structures located in a sea environment, the Impressed Current Cathodic Protection (ICCP) is mostly used as a signature method to prevent steel corrosion. For this research, specimens to which the ICCP is applied were manufactured under the assumption of two following cases the specimens are exposed to various salt damage environments (submerged zone, tidal zone), and deteriorative factors (crack) occur in concrete. For the specimens manufactured, an enhancement experiment for deterioration was conducted through regular cycle change under the temperature between 15 ~ 70℃ with 70 ~ 90% humidity. Afterwards, the method effect was verified through a half-cell method and application of the ICCP derived from salt damage environments was investigated.

  • PDF

고온 고분자 전해질막 연료전지 수소극 전극에서 서로 다른 가스 확산층에 따른 최적 바인더 함량 결정 (Determination of Optimum Binder Content in the Catalyst Layer with Different GDL for Anode of HT-PEMFC)

  • 전현수;김도형;정현승;박찬호
    • 한국수소및신에너지학회논문집
    • /
    • 제33권1호
    • /
    • pp.38-46
    • /
    • 2022
  • Two different gas diffusion layers having noticeable differences in micro-porous layer's (MPL's) crack were studied as a substrate for the gas diffusion electrode (GDE) with different binder/carbon (B/C) ratios in high-temperature polymer electrolyte fuel cell (Ht-PEMFC). As a result, the performance defined as the voltage at 0.2 A/cm2 and maximum power density from the single cells using GDEs from H23 C2 and SGL38 BC with different B/C ratios were compared. GDEs from H23 C2 showed a proportional increase of the voltage with the binder content on the other hand GDEs from SGL38 BC displayed a proportional decline of the voltage to the binder content. It was revealed that MPL crack influences the structure of catalyst layer in GDEs as well as affects the RCathode which is in close connection with the Ht-PEMFC performance.