• Title/Summary/Keyword: Cell Box

Search Result 325, Processing Time 0.029 seconds

A novel F-box protein with leucine-rich repeats affects defecation frequency and daumone response in Caenorhabditis elegans

  • Kim, Sung-Moon;Jang, Sang-Ho;Son, Na-Rae;Han, Ching-Tack;Min, Kwan-Sik;Lee, Hak-Kyo;Hwang, Sue-Yun
    • Animal cells and systems
    • /
    • v.16 no.4
    • /
    • pp.280-288
    • /
    • 2012
  • Targeted degradation of proteins through ubiquitin-mediated proteolysis is an important control mechanism in various cellular processes. The process of ubiquitin conjugation is achieved by three enzyme complexes, among which the ubiquitin ligase complex (E3) is in charge of substrate specificity. The SCF (SKP1-CUL1-F-box) family portrays the largest and the most characterized member of the E3 ligases. For each SCF complex, the ubiquitination target is recognized by the F-box protein subunit, which interacts with the substrate through a unique C-terminal domain. We have characterized a novel F-box protein CFL-1 that represents a single LRR-type F-box (FBXL) in the Caenorhabditis elegans genome. CFL-1 is highly homologous to FBXL20 and FBXL2 of mammals, which are known to regulate synaptic vesicle release and cell cycle, respectively. A green fluorescence protein (GFP)-reporter gene fused to the cfl-1 promoter showed restricted expression around the amphid and the anus. Modulation of CFL-1 activity by RNAi affected the time interval between defecations. RNAi-treated worms also exhibited reduced tendency to form dauer when exposed to daumone. The potential involvement of CFL-1 in the control of defecation and pheromone response adds to the ever expanding list of cellular processes controlled by ubiquitin-mediated proteolysis in C. elegans. We suggest that CFL-1, as a single LRR-type F-box protein in C. elegans, may portray a prototype gene exerting diverse functions that are allocated among multiple FBXLs in higher organisms.

Engineering the Cellular Protein Secretory Pathway for Enhancement of Recombinant Tissue Plasminogen Activator Expression in Chinese Hamster Ovary Cells: Effects of CERT and XBP1s Genes

  • Rahimpour, Azam;Vaziri, Behrouz;Moazzami, Reza;Nematollahi, Leila;Barkhordari, Farzaneh;Kokabee, Leila;Adeli, Ahmad;Mahboudi, Fereidoun
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.8
    • /
    • pp.1116-1122
    • /
    • 2013
  • Cell line development is the most critical and also the most time-consuming step in the production of recombinant therapeutic proteins. In this regard, a variety of vector and cell engineering strategies have been developed for generating high-producing mammalian cells; however, the cell line engineering approach seems to show various results on different recombinant protein producer cells. In order to improve the secretory capacity of a recombinant tissue plasminogen activator (t-PA)-producing Chinese hamster ovary (CHO) cell line, we developed cell line engineering approaches based on the ceramide transfer protein (CERT) and X-box binding protein 1 (XBP1) genes. For this purpose, CERT S132A, a mutant form of CERT that is resistant to phosphorylation, and XBP1s were overexpressed in a recombinant t-PA-producing CHO cell line. Overexpression of CERT S132A increased the specific productivity of t-PA-producing CHO cells up to 35%. In contrast, the heterologous expression of XBP1s did not affect the t-PA expression rate. Our results suggest that CERT-S132A-based secretion engineering could be an effective strategy for enhancing recombinant t-PA production in CHO cells.

A Consideration on Intermediate Diaphragm Spacing of Steel-Box Girder Bridges Including Distortion (뒤틀림을 고려한 강박스 거더교의 내부 다이아프램 간격에 관한 고찰)

  • Lim Da Soo;Han Kuem Ho;Park Nam Hoi;Kang Young Jong
    • Proceedings of the KSR Conference
    • /
    • 2003.10b
    • /
    • pp.522-530
    • /
    • 2003
  • Generally, diaphragms are installed in the box girder to prevent or decrease the distortion of the cross section. In engineering practice, diaphragms are spaced in 5m intervals without reasonable basis. the usual diaphragm type is solid-plate type. It is considered to be noneconomical design to the almost design engineers. In this paper, the parametric study was performed to present the design proposal about the diaphragm stiffness and spacing only in the single cell box girder. For that, the distortional warping normal stress, bending normal stress and transverse bending normal stress were analyzed using finite element program 'SMB' for the accurate structural analysis.

  • PDF

Proton Selectivity through Poly(vinyl alcohol) Based Polymer Electrolyte Membranes for Direct Methanol Fuel Cell

  • Higa, Mitsuru;Sugita, Mikinori;Maesowa, Shinichi;Hatemura, Kentaro;Endo, Nobutaka
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.270-270
    • /
    • 2006
  • We have prepared polymer electrolyte membranes (PEMs) for DMFC from polymer mixture of poly(vinyl alcohol) and poly(vinyl alcohol-co-2-acrylamido-2-methylpropane sulfonic acid) (AP-2) changing the AP-2 content. The proton conductivity(${\Box}$) and methanol permeability(P) of the PEMs increase with increasing AP-2 content because the water content of the PEMs increases with increasing AP-2 content. The proton permselectivity of the PEMs, which is defined as ${\Box}={\Box}/P$, indicates higher values than that of $Nafion{(R)}$117.

  • PDF

The Section Optimization of Prestressed Concrete Box Girder Bridges (프리스트레스트 콘크리트 박스 거더 교량의 단면최적화)

  • 노금래;김만철;박선규;이인원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.718-723
    • /
    • 1998
  • The program which could determine cross-sectional dimension of the prestressed concrete box girder bridges at the stage of preliminary design was developed using the optimal technique in this study. It could minimize the cost required in the design of box girder bridges and the construction with the full staging method. Objective cost function consisted of six independent variables such as height of cross-section, jacking force and thickness of web and bottom flange. The SUMT(Sequntial Unconstrained minimization Technique) was used to solve the constrained nonlinear minimization optimal problem. Using the program developed in this study, optimum design was performed for existing bridges with one cell cross section of constant depth. The result verify the compatibility of the program.

  • PDF

Synthesis and evaluation of inhibitors for Polo-box domain of Polo-like kinase 1

  • Eun Kyoung Ryu
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.6 no.2
    • /
    • pp.139-145
    • /
    • 2020
  • Polo-like kinase 1 (Plk1) is a key protein in mitosis and has been validated as a target for tumor therapy. It is well known to highly overexpress in many kinds of tumor, which has been implicated as a potential biomarker for tumor treatment and diagnosis. Plk1 consists of two domains, the N-terminus kinase domain and the C-terminus polo-box domain (PBD). The inhibitors have been developed for PBD of Plk1, which were shown a high level of affinity and selectivity for Plk1 that led to mitotic arrest and apoptotic cell death. This review discusses the inhibitors for PBD of Plk1 that are suitable for in vivo tumor treatment. They can be further extended for developing in vivo imaging probes for early diagnosis of tumor.

Subpopulations of miniature pig mesenchymal stromal cells with different differentiation potentials differ in the expression of octamer-binding transcription factor 4 and sex determining region Y-box 2

  • Jeon, Ryounghoon;Park, Sungjo;Lee, Sung-Lim;Rho, Gyu-Jin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.3
    • /
    • pp.515-524
    • /
    • 2020
  • Objective: Human mesenchymal stromal cells (MSCs) exhibit variable differentiation potential and can be divided accordingly into distinct subpopulations whose ratios vary with donor age. However, it is unknown whether the same is true in pigs. This study investigated MSC subpopulations in miniature pig and compared their characteristics in young (2 to 3 months) and adult (27 to 35 months) pigs. Methods: Osteogenic, chondrogenic, and adipogenic capacity of isolated MSCs was evaluated by von Kossa, Alcian blue, and oil red O staining, respectively. Cell surface antigen expression was determined by flow cytometry. Proliferative capacity was assessed with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Expression of marker genes was detected by quantitative real-time polymerase chain reaction. Results: Porcine MSCs comprised cells with trilineage and bilineage differentiation potential (tMSCs and bMSCs, respectively) and non-differentiating stromal cells (NDSCs). The tMSC and bMSC fractions were smaller in adult than in young pigs (63.0% vs 71.2% and 11.6% vs 24.0%, respectively, p<0.05); NDSCs showed the opposite trend (25.4% vs 4.8%; p<0.05). Subpopulations showed no differences in morphology, cell surface antigen expression, or proliferative capacity, but octamer-binding transcription factor 4 (OCT4) expression was higher in tMSCs than in bMSCs and NDSCs (p<0.05), whereas sex determining region Y-box 2 (SOX2) expression was higher in tMSCs and bMSCs than in NDSCs (p<0.05). Aging had no effect on these trends. Conclusion: Porcine MSCs comprise distinct subpopulations that differ in their differentiation potential and OCT4 and SOX2 expression. Aging does not affect the characteristics of each subpopulation but alters their ratios.

Research on the Optimum Design for PSC Box Girder Bridges Using the Full Staging Method (FSM 공법 PSC 박스 거더교의 최적설계에 관한 연구)

  • Kim, Ki-Wook;Park, Moon-Ho;Chang, Chun-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.3
    • /
    • pp.159-167
    • /
    • 2004
  • The objective of this study is development of the optimum design program to minimize the cost for PSC box girder bridge using the full staging method to indicate the necessity for the optimum design applied many types of bridges. It also considered the proper span length to girder depth ratio and the cell number along the width of bridge. This program used SUMT procedure and Kavlie's extended penalty function to allow infeasible design points in the process. Powell's direct method was used in searching design points and Gradient Approximate Method was used to reduce design hours. This study showed the convergence in design parameter and correlation of totally optimized cost according to cell numbers, span lengths, and lane numbers.

Characterization of Biocompatible Polyelectrolyte Complex Multilayer of Hyaluronic Acid and Poly-L-Lysine

  • Hahn, Sei-Kwang;Allan S. Hoffman
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.3
    • /
    • pp.179-183
    • /
    • 2004
  • A biocompatible polyelectrolyte complex multilayer (PECML) film consisting of poly-L-lysine (PLL) as a polycation and hyaluronic acid (HA) as a polyanion was developed to test its use for surface modification to prevent cell attachment and protein drug delivery. The formation of PECML through the electrostatic interaction of HA and PLL was confirmed by contact angle measurement, ESCA analysis, and HA content analysis. HA content increased rapidly up to 8 cycles for HA/PLL deposition and then slightly increased with an increasing number of deposition cycle. In vitro release of PLL in the PECML continued up to 4 days and ca. 25% of HA remained on the chitosan-coated cover glass after in vitro release test for 7 days. From the results, PECML of HA and PLL appeared to be stable for about 4 days. The surface modification of the chitosan-coated cover glass with PECML resulted in drastically reduced peripheral blood mononuclear cell (PBMC) attachment. Concerned with its use for protein drug delivery, we confirmed that bovine serum albumin (BSA) as a model protein could be incorporated into the PECML and its release might be triggered by the degradation of HA with hyaluronidase.

Expression of Tbr2 in the Hippocampus Following Pilocarpine-induced Status Epilepticus (Pilocarpine에 의한 경련중첩증 후 해마에서 Tbr2 발현에 관한 연구)

  • Choi, Yun-Sik
    • Journal of Life Science
    • /
    • v.23 no.12
    • /
    • pp.1532-1540
    • /
    • 2013
  • T-box transcription factor 2 (Tbr2) is a member of the T-box family of transcription factors and it plays an important role in brain development, progenitor cell proliferation, and the modulation of differentiation and function in immune cells, such as CD8+ T cells and natural killer cells. This study aims to elucidate the involvement of Tbr2 in the pathophysiological events following pilocarpine-induced status epilepticus in mice. Status epilepticus resulted in prominent neuronal cell death in discrete brain regions, such as CA3, the hilus, and the piriform cortex. Interestingly, when the immunoreactivity of Tbr2 was examined two days after status epilepticus, it was transiently increased in CA3 and in the piriform cortex. Tbr2-positive cells in CA3 and the piriform cortex were double-labeled with CD11b, a marker of microglia and a subset of white blood cells, such as monocytes, CD8+ T cells, and natural killer cells. Moreover, the double-labeled cells with Tbr2 and CD11b showed amoeboid morphology, and this data indicates that Tbr2-expressing cells may be reactive microglia or infiltrating white blood cells. Furthermore, clustered Tbr2-positive cells were observed in the platelet endothelial cell adhesion molecule-1 (PECAM-1)-positive blood vessels near the CA3 area, which suggests that Tbr2-positive cells may be infiltrating the white blood cells. Based on this data, this study is the first to indicate the involvement of Tbr2 in neuropathophysiology in status epilepticus.