• Title/Summary/Keyword: Cell Apoptosis, Cell Proliferation

Search Result 1,252, Processing Time 0.023 seconds

The effect of Asparagi Tuber on Anti-cancer and Immunocytes (천문동(天門冬)이 항암(抗癌) 및 면역세포(免疫細胞)에 미치는 영향(影響))

  • Jeong, Hyun Woo;Cho, Young-Lim
    • Herbal Formula Science
    • /
    • v.5 no.1
    • /
    • pp.169-178
    • /
    • 1997
  • To investigate effect of water extract of Asparagi Tuber(天門冬) on human cancer cell-lines and immunocytes, this research estimated proliferation of A431 cell line, KHOS-NP cell line, mouse thymocytes and mouse splenocytes, Nitric Oxide(NO) from macrophage, apoptosis and subpopulation of the mouse thymocytes. The result were obtained as follows ; 1. Asparagi Tuber inhibited the proliferation of A431 cell line. 2. Asparagi Tuber inhibited the proliferation of KHOS-NP cell line. 3. Asparagi Tuber accelerated the proliferation of mouse thymocytes. 4. Asparagi Tuber inhibited the proliferation of mouse splenocytes. 5. Asparagi Tuber $100{\mu}g/m{\ell}$ inhibited the production of NO from macrophages in vitro, being compared NPS+IFN treated group. 6. Asparagi Tuber inhibited the production of NO from macrophages in vivo, being compared LPS+IFN treated group. 7. Asparagi Tuber accelerated the induction of apoptosis of the mouse thymocytes. 8. In subpopulation Asparagi Tuber increased $T_H$ of the mouse thymocytes, but decreased $T_C/T_S$ of the mouse thymocytes.

  • PDF

Ubiquitination of p53 is Involved in Troglitazone Induced Apoptosis in Cervical Cancer Cells

  • Chen, Hui-Min;Zhang, Ding-Guo;Wu, Jin-Xiz;Pei, Dong-Sheng;Zheng, Jun-Nian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.5
    • /
    • pp.2313-2318
    • /
    • 2014
  • Peroxisome proliferator-activated receptor gamma (PPAR-${\gamma}$), a ligand-dependent nuclear transcription factor, has been found to widely exist in tumor tissues and plays an important role in affecting tumor cell growth. In this study, we investigated the effect of PPAR-${\gamma}$ on aspects of the cervical cancer malignant phenotype, such as cell proliferation and apoptosis. Cell growth assay, Western blotting, Annexin V and flow cytometry analysis consistently showed that treatment with troglitazone (TGZ, a PPAR-${\gamma}$ agonist) led to dose-dependent inhibition of cervical cancer cell growth through apoptosis, whereas T0070907 (another PPAR-${\gamma}$ antagonist) had no effect on Hela cell proliferation and apoptosis. Furthermore, we also detected the protein expression of p53, p21 and Mdm2 to explain the underlying mechanism of PPAR-${\gamma}$ on cellular apoptosis. Our work, finally, demonstrated the existence of the TGZ-PPAR-${\gamma}$-p53 signaling pathway to be a critical regulator of cell apoptosis. These results suggested that PPAR-${\gamma}$ may be a potential therapeutic target for cervical cancer.

RNA Interference-Mediated Knockdown of Astrocyte Elevated Gene-1 Inhibits Growth, Induces Apoptosis, and Increases the Chemosensitivity to 5-Fluorouracil in Renal Cancer Caki-1 Cells

  • Wang, Peng;Yin, Bo;Shan, Liping;Zhang, Hui;Cui, Jun;Zhang, Mo;Song, Yongsheng
    • Molecules and Cells
    • /
    • v.37 no.12
    • /
    • pp.857-864
    • /
    • 2014
  • Astrocyte elevated gene-1 (AEG-1) is a recently discovered oncogene that has been reported to be highly expressed in various types of malignant tumors, including renal cell carcinoma. However, the precise role of AEG-1 in renal cancer cell proliferation and apoptosis has not been clarified. In this study, we transfected the renal cancer cell line Caki-1 with a plasmid expressing AEG-1 short hairpin RNA (shRNA) and obtained cell colonies with stable knockdown of AEG-1. We found that AEG-1 down-regulation inhibited cell proliferation and colony formation and arrested cell cycle progression at the sub-G1 and G0/G1 phase. Western blot analysis indicated that the expression of proliferating cell nuclear antigen (PCNA), cyclin D1 and cyclin E were significantly reduced following AEG-1 down-regulation. In addition, AEG-1 knockdown led to the appearance of apoptotic bodies in renal cancer cells, and the ratio of apoptotic cells significantly increased. Expression of the antiapoptotic factor Bcl-2 was dramatically reduced, whereas the pro-apoptotic factors Bax, caspase-3 and poly (ADPribose) polymerase (PARP) were significantly activated. Finally, AEG-1 knockdown in Caki-1 cells remarkably suppressed cell proliferation and enhanced cell apoptosis in response to 5-fluorouracil (5-FU) treatment, suggesting that AEG-1 inhibition sensitizes Caki-1 cells to 5-FU. Taken together, our data suggest that AEG-1 plays an important role in renal cancer formation and development and may be a potential target for future gene therapy for renal cell carcinoma.

PLGA-Loaded Gold-Nanoparticles Precipitated with Quercetin Downregulate HDAC-Akt Activities Controlling Proliferation and Activate p53-ROS Crosstalk to Induce Apoptosis in Hepatocarcinoma Cells

  • Bishayee, Kausik;Khuda-Bukhsh, Anisur Rahman;Huh, Sung-Oh
    • Molecules and Cells
    • /
    • v.38 no.6
    • /
    • pp.518-527
    • /
    • 2015
  • Controlled release of medications remains the most convenient way to deliver drugs. In this study, we precipitated gold nanoparticles with quercetin. We loaded gold-quercetin into poly(DL-lactide-co-glycolide) nanoparticles (NQ) and tested the biological activity of NQ on HepG2 hepatocarcinoma cells to acquire the sustained release property. We determined by circular dichroism spectroscopy that NQ effectively caused conformational changes in DNA and modulated different proteins related to epigenetic modifications and c ell cycle control. The mitochondrial membrane potential (MMP), reactive oxygen species (ROS), cell cycle, apoptosis, DNA damage, and caspase 3 activity were analyzed by flow cytometry, and the expression profiles of different anti- and pro-apoptotic as well as epigenetic signals were studied by immunoblotting. A cytotoxicity assay indicated that NQ preferentially killed cancer cells, compared to normal cells. NQ interacted with HepG2 cell DNA and reduced histone deacetylases to control cell proliferation and arrest the cell cycle at the sub-G stage. Activities of cell cycle-related proteins, such as $p21^{WAF}$, cdk1, and pAkt, were modulated. NQ induced apoptosis in HepG2 cells by activating p53-ROS crosstalk and induces epigenetic modifications leading to inhibited proliferation and cell cycle arrest.

ALEX1 Regulates Proliferation and Apoptosis in Breast Cancer Cells

  • Gao, Yue;Wu, Jia-Yan;Zeng, Fan;Liu, Ge-Li;Zhang, Han-Tao;Yun, Hong;Song, Fang-Zhou
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.8
    • /
    • pp.3293-3299
    • /
    • 2015
  • Background: Arm protein lost in epithelial cancers, on chromosome X (ALEX) is a novel subgroup within the armadillo (ARM) family, which has one or two ARM repeat domains as opposed to more than six-thirteen repeats in the classical Armadillo family members. Materials and Methods: In the study, we explore the biological functions of ALEX1 in breast cancer cells. Overexpression of ALEX1 and silencing of ALEX1 were performed with SK-BR3 and MCF-7 cell lines. Cell proliferation and colony formation assays, along with flow cytometry, were carried out to evaluate the roles of ALEX1. Results: ALEX1 overexpression in SK-BR3 breast cancer cells inhibited proliferation and induced apoptosis. Furthermore, depletion of ALEX1 in MCF-7 breast cancer cells increased proliferation and inhibited apoptosis. Additional analyses demonstrated that the overexpression of ALEX1 activated the intrinsic apoptosis cascades through up-regulating the expression of Bax, cytosol cytochrome c, active caspase-9 and active caspase-3 and down-regulating the levels of Bcl-2 and mitochondria cytochrome c. Simultaneouly, silencing of ALEX1 inhibited intrinsic apoptosis cascades through down-regulating the expression of Bax, cytosol cytochrome c, active caspase-9, and active caspase-3 and up-regulating the level of Bcl-2 and mitochondria cytochrome c. Conclusions: Our data suggest that ALEX1 as a crucial tumor suppressor gene has been involved in cell proliferation and apoptosis in breast cancer, which may serve as a novel candidate therapeutic target.

The Study of Aati-cancer Effects of Bee Venom for Aqua-acupuncure (약침용(藥鍼用) 봉독성분(蜂毒成分) 중(中) Apamin, Melittin의 항암작용(抗癌作用))

  • Kwon, Do-Hee;Lee, Jae-dong;Choi, Do-Yong
    • Journal of Acupuncture Research
    • /
    • v.18 no.1
    • /
    • pp.129-145
    • /
    • 2001
  • Objectives : To characterize the antitumorigenic potential of three representative bee venom components, Melittin, Apamin, and Phospholipase A2, their effects on cell proliferation and apotosis of the human melanoma cell line SK-MEL-2 were analyzed using molecular biological approaches. Methodes & Results : To determine the doses of the drugs that do not induce cytotoxic damage to this cell line, cell viability was examined by MTT assay. While SK-MEL-2 cells treated with 0.5 - 2.0㎍/㎖ of each drug showed no recognizable cytotoxic effect, marked reductions of cell viability were detected at concentrations over 5.0㎍/㎖. [3H]thymidine incorporation assay for cell proliferation demonstrated that DNA replication of SK-MEL-2 cells is inhibited by Apamin and Phospholipase A2 in a dose-dependent manner. Consistent with this result, the cells were accumulated at the G1 phase of the cell cycle after treatment with Apamin and Phospholipase A2, whereas no detectable change in cell proliferation was identified by Melittin treatment. In addition, tryphan blue exclusion and flow cytometric analyses showed that all of these drugs can trigger apoptotic cell death of SK-MEL-2, suggesting that Melittin, Apamin, and Phospholipase A2 have antitumorigenic potential through the suppression of cell growth and/or induction of apoptosis. Qantitative RT-PCR analysis revealed that Apamin and Phospholipase A2 inhibit expression of growth-promoting genes such as c-Jun, c-Fos, and Cyciin D1. Furthermore, Phospholipase A2 induced tumor suppressors p53 and p21/Wafl. In addition, all three drugs were found to activate expression of a representative apoptosis-inducing gene Bax while expression of apoptosis-suppressing Bcl-2 and Bcl-XL genes was not changed. Taken together, this study strongly suggests that Metittin, Apamin, and Phosphalipase A2 may have antitumorigenic activities, which are associated with its growth-inhibiting and/or apoptosis-inducing potentials.

  • PDF

The Preventive Effects of Bcl-2 and $Bcl-_{XL}$ on Lovastatin-induced Apoptosis of C6 Glial Cells

  • Choi, Jae-Won;Lee, Jong-Min;Oh, Young-Jun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.6 no.5
    • /
    • pp.235-239
    • /
    • 2002
  • It has been reported that lovastatin induced cell death and suppressed proliferation in various cell lines. In this study, we examined whether the cytotoxic effects of lovastatin could be prevented by Bcl-2 or $Bcl-_{XL}$ in C6 glial cells. Overexpression of human Bcl-2 or $Bcl-_{XL}$ prevented lovastatin $(25{\mu}M)-induced$ changes such as DNA fragmentation, chromatin condensation, disruption of cell membrane, and cleavage of poly (ADP-ribose) polymerase. Lovastatin-induced inhibition of cell proliferation was unaffected by Bcl-2 or $Bcl-_{XL}$ overexpression. These results suggest that Bcl-2 and $Bcl-_{XL}$ can prevent lovastatin-induced apoptosis in C6 glial cells, though the inhibition of proliferation remains unaffected by these proteins.

Silibinin Inhibits Proliferation, Induces Apoptosis and Causes Cell Cycle Arrest in Human Gastric Cancer MGC803 Cells Via STAT3 Pathway Inhibition

  • Wang, Yi-Xin;Cai, Hong;Jiang, Gang;Zhou, Tian-Bao;Wu, Hai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.16
    • /
    • pp.6791-6798
    • /
    • 2014
  • Background: To investigate the effect of silibinin on proliferation and apoptosis in human gastric cancer cell line MGC803 and its possible mechanisms. Materials and Methods: Human gastric cancer cell line MGC803 cells were treated with various concentration of silibinin. Cellular viability was assessed by CCK-8 assay andapoptosis and cell cycle distribution by flow cytometry. Protein expression and mRNA of STAT3, and cell cycle and apoptosis regulated genes were detected by Western blotting and real-time polymerase chain reaction, respectively. Results: Silibinin inhibits growth of MGC803 cells in a dose- and time-dependent manner. Silibinin effectively induces apoptosis of MGC803 cells and arrests MGC803 cells in the G2/M phase of the cell cycle, while decreasing the protein expression of p-STAT3, and of STAT3 downstream target genes including Mcl-1, Bcl-xL, survivin at both protein and mRNA levels. In addition, silibinin caused an increase in caspase 3 and caspase 9 protein as well as mRNA levels. Silibinin caused G2/M phage arrest accompanied by a decrease in CDK1 and Cyclin B1 at protein and mRNA levels.. Conclusions: These results suggest that silibinin inhibits the proliferation of MGC803 cells, and it induces apoptosis and causes cell cycle arrest by down-regulating CDK1, cyclinB1, survivin, Bcl-xl, Mcl-1 and activating caspase 3 and caspase 9, potentially via the STAT3 pathway.

The effect of β-sitosterol proliferation and apoptosis in human uterine leiomyoma cells (계혈등(鷄血藤)의 Beta-sitosterol 성분이 자궁근종세포의 증식억제와 세포자멸사의 유도에 미치는 영향)

  • Park, Youngsun;Baek, Seunghee
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.18 no.1
    • /
    • pp.181-191
    • /
    • 2005
  • Purpose : ${\beta}$-sitosterol is kind of phytosterols or plant which are structurally similar to cholesterol. This study was aimed to investigate the inhibitory effect of the ${\beta}$-sitosterol on the proliferation of human uterine leiomyoma cells and the expression of gene related the mechanism of cell apoptosis. Methods : We counted the number of death cells treated with indicated time of the ${\beta}$-sitosterol and investigated cell death rate by cell count assay. Furthermore, flow cytometry analysis and DNA fragmentation assay were used to dissect between necrosis and apoptosis. and then we observed the differential gene expression by western blot analysis. Results : 1) The inhibitory effect on the growth of uterine leiomyoma cell treated with the ${\beta}$-sitosterol $16{\mu}M$ was increased in a time dependent. 2) The result of flow cytometry analysis, subG1 phase arrest related cell apoptosis was investigated 16.97% in uterine leiomyoma cell treated with the ${\beta}$-sitosterol $16{\mu}M$ and showed the fashion of proportional time dependent. 3) The gene expression of p27, p21 related cell cycle was increased according to increasing time interval but cyclin E-CDK2 complex was decreased expression. 4) The character of apoptosis, DNA fragmentation was significantly observed on the time dependent. 5) The expression of pro-caspase 3 and PARP were decreased dependent on treatment with time dependent. Conclusion : This study showed that the ${\beta}$-sitosterol have the inhibitory effect on the proliferation of human uterine leiomyoma cell and the effect was related with apoptosis.

  • PDF

Orostachys japonicus DW and EtOH Extracts Induce Apoptosis in Cholangiocarcinoma Cell Line SNU-1079

  • Choi, Eun Sol;Lee, Jang Hoon
    • The Journal of Korean Medicine
    • /
    • v.36 no.4
    • /
    • pp.19-34
    • /
    • 2015
  • Objectives: This study was performed to investigate the anti-tumor effect of O. japonicus extracts on intrahepatic cholangiocarcinoma cell line SNU-1079. Methods: Cholangiocarcinoma SNU-1079 cells were treated with various concentrations of O. japonicus DW and EtOH extracts ($0-300{\mu}g/ml$) for 24, 48 or 72 h. Cell viability was evaluated through a PMS/MTS assay, and the apoptosis rate was examined through ELISA assay and flow cytometry analysis. The mRNA expression of apoptosis- and cell cycle progression-related genes (Bcl-2, Mcl-1, Bax, Survivin, Cyclin D1, and p21) was evaluated using real-time PCR, and the caspase activity was examined using immunoblot analysis. Results: O. japonicus extracts inhibited cell proliferation and increased apoptosis rate in both ELISA assay and flow cytometry analysis. O. japonicus extracts decreased Bcl-2, Mcl-1, Survivin, and Cyclin D1 mRNA expression and increased Bax mRNA level. O. japonicus extracts also increased Caspase-3 activation. Overall, O. japonicus DW extracts were more effective than EtOH extracts. Conclusions: O. japonicus inhibited cell proliferation and induced apoptosis in SNU-1079 cells via mitochondria -mediated intrinsic pathway, which leads to Caspase-3 activation. The results indicate that O. japonicus is a potential therapeutic herb with anti-tumor effect against intrahepatic cholangiocarcinoma.