• Title/Summary/Keyword: Ceiling Collapse

Search Result 7, Processing Time 0.021 seconds

Seismic interactions between suspended ceilings and nonstructural partition walls

  • Huang, Wen-Chun;McClure, Ghyslaine;Hussainzada, Nahidah
    • Coupled systems mechanics
    • /
    • v.2 no.4
    • /
    • pp.329-348
    • /
    • 2013
  • This study aims at observing the coupling behaviours between suspended ceilings and partition walls in terms of their global seismic performance using full-scale shake table tests. The suspended ceilings with planar dimensions of $6.0m{\times}3.6m$ were tested with two types of panels: acoustic lay-in and metal clip-on panels. They were further categorized as seismic-braced, seismic-unbraced, and non-seismic installations. Also, two configurations of 2.7 m high partition wall specimens, with C-shape and I-shape in the plane layouts, were tested. In total, seven ceiling-partition-coupling (CPC) specimens were tested utilizing a unidirectional seismic simulator. The test results indicate that the damage patterns of the tested CPC systems included failure of the ceiling grids, shearing-off of the wall top railing, and, most destructively, numerous partial detachments and falling of the ceiling panels. The loss of panels was mostly concentrated near the center of the tested partition wall. The testing results also confirmed that the failure mode of the non-seismic CPC systems was brittle: The whole system would collapse suddenly all at once when the magnitude of the inputs hit the capacity threshold, rather than displaying progressive damage. Overall, the seismic capacity of the unbraced and braced CPC systems could be up to 1.23 g and 2.67 g, respectively; these accelerations were both achieved at the base of the partition wall. Nonetheless, for practical applications, it is noteworthy that the three-dimensional nature of seismic excitations and the size effect of the ceiling area are parameters that exacerbate the CPC's seismic response so that their actual capacity may be dramatically decreased, leading to important losses even in moderate seismic events.

Lunar Pit Craters Presumed to be the Entrances of Lava Caves by Analogy to the Earth Lava Tube Pits

  • Hong, Ik-Seon;Yi, Yu;Kim, Eojin
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.2
    • /
    • pp.131-140
    • /
    • 2014
  • Lava caves could be useful as outposts for the human exploration of the Moon. Lava caves or lava tubes are formed when the external surface of the lava flows cools more quickly to make a hardened crust over subsurface lava flows. The lava flow eventually ceases and drains out of the tube, leaving an empty space. The frail part of the ceiling of lava tube could collapse to expose the entrance to the lava tubes which is called a pit crater. Several pit craters with the diameter of around 100 meters have been found by analyzing the data of SELENE and LRO lunar missions. It is hard to use these pit craters for outposts since these are too large in scale. In this study, small scale pit craters which are fit for outposts have been investigated using the NAC image data of LROC. Several topographic patterns which are believed to be lunar caves have been found and the similar pit craters of the Earth were compared and analyzed to identify caves. For this analysis, the image data of satellites and aerial photographs are collected and classified to construct a database. Several pit craters analogous to lunar pit craters were derived and a morphological pit crater model was generated using the 3D printer based on this database.

A Study on the Characteristics of Fire Resistance of Window Material in Compartment Fire (건물화재시 창문재료에 따른 내화특성 연구)

  • Hur, Man-Sung;Jang, Moon-Seok;Cho, Soo
    • Fire Science and Engineering
    • /
    • v.17 no.1
    • /
    • pp.62-67
    • /
    • 2003
  • The full-scale compartment fire tests were carried out to evaluate the characteristics of fire resistance of window material under actual fire conditions. The room size used for full-scale room fire tests was 4 by 3.8 m with 2.4 m high ceiling. The windows with PVC, Aluminum and AL+Wood frame materials were established, sofa and mattress were used as fire sources. The window contained pair glasses with the air between 6 mm glasses. Temperatures at total 32 points in the room were measured to find the temperature distribution in the room fire. It is examined that thermal effects on window frame materials such as charring, distortion, melting, structural collapse, and other effects.

Analysis on Surface Collapse of the Road NATM Tunnel through the Weathered Rock (풍화대를 통과하는 도로 NATM 터널의 천단부 함몰에 대한 연구)

  • Shin, Eun-Chul;Yoo, Jai-Sung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.2
    • /
    • pp.55-64
    • /
    • 2016
  • The construction of the road NATM tunnel, which undergoes the weathered zone of the mountain, was in process with the reinforcement methods such as the rock bolt, shotcrete depositing, and the multi step grout with large diameter steel pipe. The collapse from the ceiling, and on the ground surface area(sink hole), of which were measured to be 25m from the ground surface($V=12m(W){\times}14m(L){\times}5m(H)=840m^3$), as well as excessive displacements in the tunnel, had occurred. In order to execute the necessary reconstruction work, the causes of the surface collapses were inspected through the field investigation, in-situ tests, and numerical analysis. As a result, several proper solutions were suggested for both internal and external reinforcements for the tunnel. As a result of numerical analysis, the collapsed zone of the tunnel was reinforced up to 0.5D~1.0D laterally by the cement grouting on the ground surface, 0.5D longitudinally by the multi step grout with large diameter steel pipe in tunnel. With further reinforcement implemented by rebars in lining, the forward horizontal boring was executed to the rest of the tunnel to evaluate the overall status of the tunnel face. Appropriate reinforcement methods were provided if needed.

Conservation and Management of Lava Tubes in Jeju Island, Korea (제주도 용암동굴의 보존 및 관리 방안에 관한 연구)

  • Kim, Beom-Hoon;Kim, Tae-Ho
    • Journal of the Korean association of regional geographers
    • /
    • v.13 no.6
    • /
    • pp.609-622
    • /
    • 2007
  • This paper examines the lava tubes designated as a natural monument in Jeju Island, and then makes the several suggestions for conserving and managing them. The cave entrances should be scientifically and strictly managed to prevent the deterioration, and to preserve the interior ecosystem, of the lava tubes. The land use and vegetation of the ground surface over the lava tubes should be also systematically managed; the destroyed sand dunes must be recovered for the development of speleothem in the lava tubes, and the plants with deep roots must be removed for the prevention of ceiling collapse. The provincial authorities should manage the ground surface over the lava tubes as a public land to remove the factors threatening the stability of the lava tubes. Since the roads crossing the ground surface are likely to cause the collapse of the lava tubes, new roads bypassing the caves need to be constructed, and warning signs should be also installed at the traverse points. A monitoring system on the cultural properties protection area over the lava tubes could be effectively established by encouraging residents to participate the conservation program of lava tubes. Since the falling blocks from ceilings have been usually observed in the lava tubes, it is urgent to examine their stability. In particular, the dangerous sections must be continuously monitored for taking a quick measure against the collapse. The air environments of lava tubes need to be scientifically analyzed based upon the long-term observations. The lighting equipments must be improved to minimize the green pollution in the lava tubes open to the public. The numbers of visitors should be also controlled to prevent the destruction and contamination of lava tubes caused by a large number of visitors.

  • PDF

An Experimental Study of Sprinkler system for Sandwich Panel Wall Protection (샌드위치패널 벽면보호용 스프링클러설비 적용 실험)

  • Seo, Dong-Hun;Kim, Won-Hyung;Kim, Jong-Hoon;Lee, Young-Jae
    • Fire Science and Engineering
    • /
    • v.31 no.5
    • /
    • pp.37-43
    • /
    • 2017
  • Domestic sandwich panel buildings are widely used on walls and roofs of factories and warehouse facilities. Factory and warehouse facilities have high fire load and rapid spread of fire due to their use characteristics, leading to large fires. Due to the characteristics of materials, walls and roofs are collapsed, resulting in life damage and property damage. In this regard, this study examined domestic and international standards of sprinkler facilities to prevent ignition of sandwich panel walls. Also, in order to check whether the fire was prevented by installing the head on the wall of the sandwich panel, the fire test was carried out with 10 cm, 60 cm, and 120 cm from the wall along the sprinkler head installation standard of domestic fire safety standards. As a result of the fire test, it was confirmed that the sandwich panel was prevented from igniting when the head of water pressure 0.1 MPa and water quantity K-80 was installed. According to the separation distance, it was impossible to measure the temperature at 10 cm, but at 60 cm, At the maximum temperature of $525^{\circ}C$ and 120 cm, the maximum temperature of the wall of the sandwich panel was measured as $276^{\circ}C$. As a result of the fire test, considering the fire point of 450 degrees Celsius in the fire test of the sandwich panel, the distance from the sandwich panel wall to the combustible is more than 120 cm.

An Archaeological Review of the Inscribed Bricks Excavated from the Tomb of Jang Mui: A Focus on the Collection of the National Museum of Korea (장무이묘 출토 명문전(銘文塼)의 고고학적 검토 -국립중앙박물관 소장품을 중심으로)

  • Lee Nakyung
    • Bangmulgwan gwa yeongu (The National Museum of Korea Journal)
    • /
    • v.1
    • /
    • pp.36-73
    • /
    • 2024
  • The Tomb of Jang Mui located in Bongsan-gun, Hwanghae-do Province has attracted much attention since its first investigation due to the inscribed bricks found there that have allowed the guessing of the name and official title of its occupant and construction date. Inscriptions on these bricks, such as the "Prefect of Daebang Commandery Jang Mui" and the "Mu" (戊, the fifth sign of the Chinese calendar), and "Sin" (申, the ninth sign of the Chinese zodiac), have become the basis for believing the location of the government office of Daebang Commandery to be in Bongsangun, Hwanghae-do Province rather than somewhere in the Hangang River region. From the early days of its investigation, the tomb was suggested as historic remains of the Daebang Commandery along with the Earthen Fortress in Jitap-ri. Inscribed bricks excavated from the Tomb of Jang Mui were featured in several books and articles in the form of photographs and rubbings, leading to a vast body of studies on its construction period and the characteristics of its occupant that drew upon interpretations of the inscriptions. However, the inscribed bricks themselves were not publicly available outside those held in the collection of the University of Tokyo, making it difficult to expect consistent research findings on the types of inscribed bricks and their contents. Following previous studies re-examining the structure of the tomb and the materials used for its construction, most scholars dated the Tomb of Jang Mui to 348, a period after the collapse of Daebang Commandery. However, there is still a lack of adequate examination of the bricks, which account for the majority of the artifacts excavated from the tomb. Among the bricks excavated from most brick chamber tombs, including the Tomb of Jang Mui, only those with inscriptions or designs have been collected. Moreover, among these, only those with inscriptions or designs on the stretcher faces have been documented. Accordingly, the bricks themselves have been notably understudied. This paper intends to reorganize the contents of the inscriptions on eleven types (out of sixty-one pieces) of bricks in the collection of the National Museum of Korea, which make up the majority of the bricks excavated from the Tomb of Jang Mui. It also classified them according to their shapes. Furthermore, it examined the bricks from the Tomb of Jang Mui as architectural materials by focusing on their production techniques, including their forming, drying, and firing. Taking a more specific approach, it then compared the results to other bricks from the second century through the fourth century: those from the brick chamber tombs of the Nangnang and Daebang Commanderies and those from the brick chamber tombs built after Nangnang and Daebang Commanderies were ousted. The examination of bricks from the Tomb of Jang Mui has revealed that these bricks were basically produced using the brick manufacturing techniques of Nangnang, but they incorporated new elements found in bricks from brick chamber tombs or brick-and-stone chamber tombs constructed around the mid-fourth century in terms of their size, the use of lime, and the number of inscribed bricks. This supports the prevailing view that the date of the construction of the Tomb of Jang Mui is 348. The Tomb of Jang Mui sustained the existing brick chamber tomb burial tradition, but its ceiling was finished with stone. It demonstrates a blending of the brick chamber tomb practice of the Nangnang and Daebang Commanderies by using bricks produced based on related techniques, but with new elements such as the addition of a lime layer to the bricks. This fusion reflects the political circumstances of its time, such as the expulsion of the Daebang Commandery and the advance of the Goguryeo Kingdom, leading to diverse interpretations. Given archaeological evidence such as the structure, materials, and location of the tomb, the Tomb of Jang Mui appears to be highly related to the Goguryeo Kingdom. However, the forms of the inscribed bricks and the contents of the inscriptions share similarities with brick chamber tombs constructed during the third and fourth centuries in the Jiangsu and Zhejiang regions in China. Further studies on whether the use of lime was an influence from Goguryeo or a continuation of the Daebang tradition and a comparative examination with contemporaneous stone ceiling tombs will provide a more refined understanding of the Tomb of Jang Mui.