• Title/Summary/Keyword: CeO2

Search Result 1,085, Processing Time 0.031 seconds

The Effect of La2O3 Loading on the Performance of Ni-La2O3-Ce0.8Zr0.2O2 Catalysts for Steam Reforming of Methane (수증기 개질 반응에서 Ni-La2O3-Ce0.8Zr0.2O2 촉매의 La2O3 함량이 촉매의 성능에 미치는 영향)

  • YOO, SEONG-YEUN;KIM, HAK-MIN;KIM, BEOM-JUN;JANG, WON-JUN;ROH, HYUN-SEOG
    • Journal of Hydrogen and New Energy
    • /
    • v.29 no.5
    • /
    • pp.419-426
    • /
    • 2018
  • $Ni-La_2O_3-Ce_{0.8}Zr_{0.2}O_2$ catalysts with various $La_2O_3$ loading were investigated for hydrogen production from steam reforming of methane (SRM). The $La_2O_3$ loading influenced the physicochemical properties of $Ni-La_2O_3-Ce_{0.8}Zr_{0.2}O_2$ catalysts such as BET surface area, Ni dispersion, Ni size and reducibility. Among the prepared catalysts, $Ni-70La_2O_3-Ce_{0.8}Zr_{0.2}O_2$ catalyst showed the highest activity and stability at a very high gas hourly space velocity (GHSV) of $932,556h^{-1}$. This is mainly due to high Ni dispersion, small Ni size and high reducibility.

Structural and electrical properties of MFISFET using a $Pt/Bi_{3.25}La_{0.75}Ti_3O_{12}/CeO_2/Si$ structure ($Pt/Bi_{3.25}La_{0.75}Ti_3O_{12}/CeO_2/Si$ 구조를 이용한 MFISFET의 구조 및 전기적 특성)

  • Kim, K.T.;Kim, C.I.;Lee, C.I.;Kim, T.A.
    • Proceedings of the KIEE Conference
    • /
    • 2004.11a
    • /
    • pp.183-186
    • /
    • 2004
  • The metal-ferroelectric-insulator-semiconductor(MFIS) capacitors were fabricated using a metalorganic decomposition (MOD)method. The $CeO_2$ thin films were deposited as a buffer layer on Si substrate and $Bi_{3.25}La_{0.75}Ti_3O_{12}$ (BLT) thin films were used as a ferroelectric layer. The electrical and structural properties of the MFIS structure were investigated by varying the $CeO_2$ layer thickness. The width of the memory window in the capacitance-voltage (C-V)curves for the MFIS structure decreased with increasing thickness of the $CeO_2$ layer. Auger electron spectroscopy (AES) and transmission electron microscopy (TEM) show no interdiffusion by using the $CeO_2$ film as buffer layer between the BLT film and Si substrate. The experimental results show that the BLT-based MFIS structure is suitable for non-volatile memory field-effect-transistors (FETs) with large memory window.

  • PDF

A Study on the Brown Coloration of the High Lead-Silicate Glass by X-ray Irradiation (고납유리의 X선 조사에 따른 Browning 현상에 관한 연구)

  • 박용완;강원호
    • Journal of the Korean Ceramic Society
    • /
    • v.20 no.3
    • /
    • pp.250-254
    • /
    • 1983
  • The effects of the various amount of $CeO_2$ $MnO_2$ and $Fe_2O_3$ added to the high lead-silicate glasses on the X-ray induced coloration were studied. The light transmissions and chromaticities of the glasses before and after exposing to X-ray radiation were measured to investigate the effects by additivies. The results are as follows ; 1. High lead-silicate glass added $CeO_2$ or $MnO_2$ has a little effect on the transmission but has a considerable effect on the chromaticity. The chromaticies of 56.6wt% PbO content glasses were changed as 3-7 times as those of 28.3wt% PbO content glasses. 2. By the X-ray irradiation glasses containing 0.2-0.5wt% $CeO_2$ were changed the least in chromaticity that is the most effective in preventing the X-ray induced coloration. 3. By X-ray irradiation $MnO_2$ reduced the transmissions and showed purple coloration. 4. Transmission change amounts of the glasses added $CeO_2$ and $Fe_2O_3$ were less than those of the glasses added $CeO_2$ alone by X-ray irradiation.

  • PDF

Effect of CeO$_2$ buffer layer on the crystallization of YBCO thin film on Hastelloy substrate (비정질 금속 기판상에 증착된 YBCO 박막의 결정성에 대한 CEO$_2$ 완충막의 효과)

  • Kim, Sung-Min;Lee, Sang-Yeol
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.392-396
    • /
    • 1999
  • Superconducting YBa$_2Cu_3O_{7-{\delta}}$(YBCO) thin films were grown on Hastelloy(Ni-Cr-Mo alloys) with CeO$_2$ buffer layer in-situ by pulsed laser deposition in a multi-target processing chamber. To apply superconducting property on power transmission line, we have deposited YBCO thin film on flexible metallic substrate. However, it is difficult to grow the YBCO films on flexible metallic substrates due to both interdiffusion problem between metallic substrate and superconducting overlayers and non-crystallization of YBCO on amorphous substrate. It is necessary to use a buffer layer to overcome the difficulties. We have chosen CeO$_2$ as a buffer layer which has cubic structure of 5.41 ${\AA}$ lattice parameter and only 0.2% of lattice mismatch with 3.82 ${\AA}$ of a-axis lattice parameter of YBCO on [110] direction of CeO$_2$ In order to enhance the crystallization of YBCO films on metallic substrates, we deposited CeO$_2$ buffer layers with varying temperature and 02 pressure. By XRD, it is observed that dominated film orientation is strongly depending on the deposition temperature of CeO$_2$ layer. The dominated orientation of CeO$_2$ buffer layer is changed from (200) to(111) by increasing the deposition temperature and this transition affects the crystallization of YBCO superconducting film on CeO$_2$ buffered Hastelloy.

  • PDF

Structure and Superconducting Properties of Ba-substituted (Ru,Cu)(Sr,Eu)$_2$(Eu,Ce)$_2Cu_2O_z$ System (Ba 치환에 따른 (Ru,Cu)(Sr,Eu)$_2$(Eu,Ce)$_2Cu_2O_z$ 계의 초전도 특성)

  • Lee, H.K.
    • Progress in Superconductivity
    • /
    • v.13 no.1
    • /
    • pp.12-17
    • /
    • 2011
  • We investigated the effects of Ba and Cu co-substitution on the structural and superconducting properties of ($Ru_{1-y}Cu_y$)($Sr_{1.67-x}Ba_xEu_{0.33}$)($Eu_{1.34}Ce_{0.66}$)$Cu_2O_z$ samples. X-ray diffraction(XRD) reveals that single-phase samples can be obtained in the range from x = 0.1 to 0.2 for ($Ru_{0.5}Cu_{0.5}$)($Sr_{1.67-x}Ba_xEu_{0.33}$)($Eu_{1.34}Ce_{0.66}$)$Cu_2O_z$ and from y = 0.25 to 0.5 for ($Ru_{1-y}Cu_y$)($Sr_{1.47}Ba_{0.2}Eu_{0.33}$)($Eu_{1.34}Ce_{0.66}$)$Cu_2O_z$, respectively. All samples with compositions of ($Ru_{0.5}Cu_{0.5}$)($Sr_{1.67-x}Ba_xEu_{0.33}$) ($Eu_{1.34}Ce_{0.66}$)$Cu_2O_z$ (x = 0 - 0.33) show superconducting transition behavior and the onset transition temperature decreases slightly with increasing x in consistent with the change of hole concentration estimated from room temperature thermoelectric power measurements. The XRD and resistivity measurements for the ($Ru_{1-y}Cu_y$)($Sr_{1.47}Ba_{0.2}Eu_{0.33}$)($Eu_{1.34}Ce_{0.66}$) $Cu_2O_z$ system indicate that the partial substitution of Cu for Ru is necessary to form phase pure samples, but result in a small change in transition temperature in the single-phase region from x = 0.25 to 0.5.

Partial Oxidation of Methane to Syngas over M(10)-Ni(5)/SBA-15(M=Ce, Nd, Sm) Catalysts (M(10)-Ni(5)/SBA-15(M=Ce, Nd, Sm) 촉매상에서 합성가스 제조를 위한 메탄의 부분산화반응)

  • Seo, Ho Joon;Kim, Yong Sung
    • Applied Chemistry for Engineering
    • /
    • v.28 no.6
    • /
    • pp.720-725
    • /
    • 2017
  • M(10)-Ni(5)/SBA-15(M=Ce, Nd, Sm) catalysts were prepared for the partial oxidation of methane (POM) to syngas. The catalysts were characterized by BET, TEM, and XPS. The BET-specific surface area and average pore size for M(10)-Ni(5)/SBA-15(M=Ce, Nd, Sm) were 538.8, 504.3, and $447.3m^2/g$ and 6.4, 6.8, and 7.1 nm, respectively. TEM results showed that the mesoporous hexagonol structure was formed for SBA-15, while the homogeneous dispersion of Ni and Ce particles on the surface was formed for Ce(10)-Ni(5)/SBA-15 caused by the confinment effect of SBA-15. XPS data confirmed that $Ce^{4+}$ and $Ce^{3+}$ on the surface catalyst have two oxidation states due to the lattice oxygen species ($O^{2-}$, $O^-$). The yields of POM to syngas over Ce(10)-Ni(5)/SBA-15 were 52.9% $H_2$ and 21.7% CO at 1 atm, 973 K, $CH_4/O_2=2$, $GHSV=1.08{\times}10^5mL/g_{cat.}{\cdot}h$, and these values were kept constant even after 75 h on streams. The same tendency of syngas yields was observed for M(10)-Ni(5)/SBA-15(M=Ce, Nd, Sm). These results confirm that the redox reaction of promoters including Ce, Nd, and Sm enhanced the stability and yield of catalysts.

Study of Low-K Si-O-C-H Thin Films (Si-O-C-H 저유전율 박막의 특성 연구)

  • 김윤해;이석규;김형준
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.106-106
    • /
    • 1999
  • 반도체 소자가 소브마이크론 이하로 집적화 되어감에 따라, RC 신호 지연 및 간섭 현상, 전력 소비의 증가 문제가 심각하게 대두되고 있다. 이러한 문제를 개선하기 위해서는, 현재 층간 절연막으로 상용화되어 있는 SiO2 박막을 대체할 저유전율 박막의 개발이 필수적이며, 많은 연구자들이 여러 가지 새로운 유기물질과 무기물질은 제안하고 있다. 반도체 공정상의 적합성을 고려할 때, 이들 여러물질 중에서 알킬기를 함유한 SiO2 박막(이하 'Si-O-C-H 박막'으로 표기)에 많은 관심이 집중되고 있다. Si-O-C-H 박막은 알킬기에 의해 형성된 나노 스케일의 기공에 의해 작은 유전율을 가지게 된다. 따라서, 박막내의 알킬기의 함유량이 많을수록 보다 작은 유전율을 얻을 수 있다. 그러나 과다한 알킬기의 함유는 Si-O-C-H 박막의 열적 특성을 열화시키는 부정적인 효과도 있다. 본 연구에서는 bis-trimethylsilylmethane(BTMSM, H9C3-Si-CH2-Si-C3H9) precursor를 이용하여 Si-O-C-H 박막을 증착하였다. BTMSM precursor의 중요한 특징중 하나는, 두 실리콘 원자 사이에 Si-CH2 결합이 존재한다는 사실이다. Si-CH2 결합은 양쪽의 Si에 의해 강하게 결합되어 있어서, BTMSM precursor를 사용하여 Si-O-C-H 박막은 유전상수도 작을 뿐 아니라, 열적으로도 안정된 특성이 얻어질 것으로 기대된다. Si-O-C-H 박막의 열적 안정성을 평가하기 위하여, 고온 열처리 전후의 FT-IR 스펙트럼 분석과 C-V(capacitance-voltage) 측정에 의한 유전상수 변화를 살펴보았다. 또한 증착된 박막의 미세구조 및 step coverage 특성 관찰을 위하여 SEM(scanning electron microscopy) 및 TEM(transmission electron micfroscopy) 분석을 하였다. 변화하였으며 이는 포토루미네슨스의 변화의 원인으로 판단된다. 연구하였다. CeO2 와 Si 사이의 계면을 TEM 측정에 의해 분석하였고, Ce와 O의 화학적 조성비를 RBS에 의해 측정하였다. Si(100) 기판위에 증착된 CeO2 는 $600^{\circ}C$ 낮은 증착률에서 seed layer를 하지 않은 조건에서 CeO2 (200) 방향으로 우선 성장하였으며, Si(111) 기판 위의 CeO2 박막은 40$0^{\circ}C$ 높은 증착률에서 seed layer를 2분이상 한 조건에서 CeO2 (111) 방향으로 우선 성장하였다. TEM 분석에서 CeO2 와 Si 기판사이에서 계면에서 얇은 SiO2층이 형성되었으며, TED 분석은 Si(100) 과 Si(111) 위에 증착한 CeO2 박막이 각각 우선 방향성을 가진 다결정임을 보여주었다. C-V 곡선에서 나타난 Hysteresis는 CeO2 박막과 Si 사이의 결함때문이라고 사료된다.phology 관찰결과 Ge 함량이 높은 박막의 입계가 다결정 Si의 입계에 비해 훨씬 큰 것으로 나타났으며 근 값도 증가하는 것으로 나타났다. 포유동물 세포에 유전자 발현벡터로써 사용할 수 있음으로 post-genomics시대에 다양한 종류의 단백질 기능연구에 맡은 도움이 되리라 기대한다.다양한 기능을 가진 신소재 제조에 있다. 또한 경제적인 측면에서도 고부가 가치의 제품 개발에 따른 새로운 수요 창출과 수익률 향상, 기존의 기능성 안료를 나노(nano)화하여 나노 입자를 제조, 기존의 기능성 안료에 대한 비용 절감 효과등을 유도 할 수 있다. 역시 기술적인 측면에서도 특수소재 개발에 있어 최적의 나노 입자 제어기술 개발 및 나노입자를 기능성 소재로 사용하여 새로운 제품의 제조와 고압 기상 분사기술의 최적화에 의한 기능성 나노 입자 제조 기술을 확립하고 2차 오염 발생원인 유기계 항균제를 무기계 항균제로 대

  • PDF

Sintering and Microstructure of $Ce-TZP/Al_2O_3$ Ceramic Composite ($Ce-TZP/Al_2O_3$ 세라믹 복합재료의 소결과 미세구조)

  • 박홍채;홍상희;이윤복;오기동
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.7
    • /
    • pp.703-714
    • /
    • 1994
  • Sintering and microstructure of Ce-TZP/Al2O3 composite with $\alpha$-Al2O3 matrix containing dispersed 5~50 vol% ZrO2 were discussed. Sintered density was increased with elevating forming pressure in range of 6~300 MPa and about >99.2% of theoretical density was obtained at 1$600^{\circ}C$ for 2h in case of 300 MPa of 6~300 MPa uniaxially cold-pressed compacts containing 20 vol% ZrO2. All kinds of different batch composition exhibited nearly the same shrinkage behaviour with end-point shrinkage between 20 and 24%, and had the maximum shrinkage rate (0.41~0.54%/min) around 140$0^{\circ}C$. Grain growth was occurred faster in $\alpha$-Al2O3 than in {{{{ gamma }}-Al2O3 starting matrix during sintering at 1$600^{\circ}C$. Bimodal pore size distribution of interaglomerate pores with size of 0.03~0.2 ${\mu}{\textrm}{m}$ and of interaglomerate pores with size of around 60 ${\mu}{\textrm}{m}$ was obtained in Ce-TZP/$\alpha$-Al2O3 composite sintered at 130$0^{\circ}C$. But unimodal pore size distribution with around 0.1 ${\mu}{\textrm}{m}$ was observed in Ce-TZP/{{{{ gamma }}-Al2O3 composite sintered at the same temperature. Microcracks were occurred due to the tlongrightarrowm transformation of ZrO2 on cooling process.

  • PDF

Synthesis of Biodiesel from Soybean Oil over MoO3-SnO2-CeO2 Catalysts (MoO3-SnO2-CeO2 촉매에 의한 대두유로부터 바이오디젤의 합성)

  • Jung, Won Young;Lee, Man Sig;Hong, Seong-Soo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.723-728
    • /
    • 2012
  • The production of biodiesel by transesterification of soybean oil was performed on $MoO_3$, $SnO_2$ and $CeO_2$ mixed oxides. The catalysts were characterized using XRD and $NH_3$-TPD. $MoO_3$ showed the highest activity among the three metal oxides. When 7 wt% of catalysts was introduced into the reactants, the highest activity was obtained and the water added to reactant decreased the catalytic activity. $MoO_3$ and $SnO_2$ mixed with 50:50 showed the highest activity and $CeO_2$ added with 20% on the $MoO_3-SnO_2$ mixed oxide also showed the highest activity. The catalytic activity showed to have a good relationship with the amount of acid site of catalysts. When the waste soybean oil was used as a reactant, the conversion was decreased about 30%.

Fabrication of Nano $Y_{2}O_{3}-CeO_{2}$ Sintered Body Using Dispersion Stability (분산 안정성을 이용한 나노 $Y_{2}O_{3}-CeO_{2}$ 소결체의 제조)

  • Kim, Eun-Jung;Lee, Sang-Hoon;Choi, Sung-Churl
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.9
    • /
    • pp.853-859
    • /
    • 2001
  • The dispersion stability of nano $Y_2O_3-CeO_2$ system was investigated using colloid surface chemistry. Green body of $Y_2O_3$ doped $CeO_2$ was prepared by slip casting in and aqueous system. The dispersion stability of suspension between powders and organic additive was accomplished through electrokinetic behavior of suspension, which was done by ESA apparatus. The dynamic mobility of particles was enhanced when the anionic dispersant of the amount of 1wt% was added. The dissolution of $Y^{3+}$ ion in suspension occurred in the acidic region so that pH value in slurries did not move to below 7.0. In the $CeO_2-Y_2O_3$ system, optimal preparation of suspension was made after adding the anionic dispersant as the amount of 1wt% and pH value of 11.0, and then slip-cast and sintered at 1400$^{\circ}$C, 2 hrs. It appeared relative density of >98% and homogeneous distribution of Y element in depth direction as well as in the microstructure of surface.

  • PDF