• Title/Summary/Keyword: CeO2

Search Result 1,085, Processing Time 0.036 seconds

The Crystal and Molecular Structure of p-Phenylenediamine Dihydroperchlorate (p-Phenylenediamine Dihydroperchlorate의 결정 및 분자구조)

  • Ahn Choong Tai
    • Journal of the Korean Chemical Society
    • /
    • v.21 no.5
    • /
    • pp.320-329
    • /
    • 1977
  • p-Phenylenediamine dihydroperchlorate, $C_6H_4N_2H_4{\cdot}2HC1O_4$, crystallizes in space group $P\={1}$ with $a=4.79{\pm}0.02,\;b=9.03{\pm}0.02,\;c=7.12{\pm}0.03{\AA},\;{\alpha}=109.4{\pm}0.2,\;{\beta}=79.6{\pm}0.2,\;r=104.6{\pm}0.2^{\circ},\;Z=1$. The structure has been solved by the Patterson and Fourier methods. The refinement by block-diagonal least-squares cycles gives R = 0.13 for 387 observed reflexions collected on equi-inclination Weissenberg photographs with CuK${\alpha}$ radiation. There are two different types of five hydrogen bonds. The first type consists of one trifurcated N${\cdot}{\cdot}{\cdot}$O hydrogen bond and the second of two normal N${\cdot}{\cdot}{\cdot}$O hydrogen bonds, both of which exist between the amino group and the perchlorate, groups. A p-phenylenediamine group is approximately planar within an experimental error and bonded to twelve perchlorates: ten perchlorates forming hydrogen bonds and two being contacted with the van der Waals forces. A perchlorate group is surrounded by six p-phenylenediamines and four perchlorates; among the six p-phenylenediamines, five of them are hydrogen-bonded, and the rest contacted with the van der Waals force.ce anaysis of our samples and investigated the variarions in the values of parameters obtained through fitting the theoretical impedance to the experimental impedance. The characters of the dielectric constant and the impedance showed abnormal variations for the 0.2 at K-doped NSBN ceramics, which we were able to interpret in terms of the variations in the number A-site vacancies with the K doping ratio. From these results, A-site vacancies are thought to be space charges that influence the ferroelectric properties of NSBN ceramics.

  • PDF

Electrical Properties of DC-DC Converter Circuit using Piezoelectric Energy Harvesting (압전 에너지 하베스팅를 이용한 DC-DC 컨버터회로의 전기적특성)

  • Kang, Jin-Hee;Seo, Byeong-Ho;Hwang, Lak-Hoon;Yoo, Ju-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.301-301
    • /
    • 2010
  • 현재 전 세계는 앞으로 사용 될 대체 에너지에 많은 관심 가지고 있다. 지금 사용하고 있는 에너지 연료는 한정되어 있기 때문에 대체에너지에 대한 연구가 활발히 진행 되고 있다. 그 중 압전체를 이용한 에너지 하베스팅은 많은 주목을 받고 있다. 주변 환경에서 필요한 에너지를 끌어 쓸 수 있는 대표적인 청정에너지 시스템 중 하나이기 때문이다. 최근 전원 공급원으로써 에너지 수확 시스템은 현 사회에 사용되고 있는 배터리로 전원을 사용하는 제품들을 소용량과 저전압 분야에서의 에너지 수확의 원리를 이용하여 전기전자제품의 사용시간 연장 및 응용분야 확대를 시도하는 연구가 활발히 수행되고 있다. 압전세라믹스를 이용한 에너지 하베스팅은 진동에너지를 전기에너지로 변환하는 것으로서 압전 특성이 높아야 한다. 일반적으로 압전 세라믹스는 PbO 성분이 들어가므로 환경적 오염 뿐만 아니라 인체에도 영향이 좋지 않으므로 많은 나라에서 이러한 성분을 제한하고 점차적으로 줄어들고 있는 시점에서 PbO를 사용하지 않고 Lead-Free 세라믹를 사용한 연구가 진행되고 있다. 이 논문에서는 일반적인 소결 방법을 이용하여 (Na,K)NbO3 세라믹에 CeO2를 첨가한 압전 세라믹을 제작하였다. 제작된 압전 세라믹스로 에너지 하베스팅 소자를 제작하고, 이 소자로 수확된 에너지로 DC-DC Converter 응용 특성에 대하서 연구하였다. 압전 세라믹스의 좋은 압전 특성을 출력하기 위하여 캔틸레버의 고유 진동수가 진동원의 주파수와 일치하는 공진을 일으켜야 한다. 따라서 구동회로는 주파수원을 찾아 설계하였고, 압전 세라믹스의 진동은 가진기를 이용하여 구동실험을 하였다. 지금까지 나와있던 에너지 하베스팅 회로와 비교하여 그 특성을 분석하고, 시뮬레이션 및 실험을 통하여 검증하였다.

  • PDF

Efficacy of Ag-CuO Filler Tape for the Reactive Air Brazing of Ceramic-Metal Joints

  • Kim, Myung Dong;Wahid, Muhamad FR;Raju, Kati;Kim, Seyoung;Yu, Ji Haeng;Park, Chun Dong;Yoon, Dang-Hyok
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.5
    • /
    • pp.492-497
    • /
    • 2018
  • This paper reports the efficacy of tape casting using an Ag-10 wt% CuO filler for the successful joining of a sintered $Ce_{0.9}Gd_{0.1}O_{2-{\delta}}-La_{0.7}Sr_{0.3}MnO_{3{\pm}{\delta}}$ (GDC-LSM) ceramic with a SUS 460 FC metal alloy by reactive air brazing. The as-prepared green tape was highly flexible without drying cracks, and the handling was easy when used as a filler material for reactive air brazing. Heat treatment for the GDC-LSM/SUS 460 FC joint was performed at $1050^{\circ}C$ for 30 min in air. Microstructural observations indicated a reliable and compact joining. The room temperature mechanical shear strength of the as-brazed joints was $60{\pm}8MPa$ with a cohesive failure. The flexural strength of joints was measured from room temperature up to $850^{\circ}C$, where the strength retention revealed to be almost 100% at $500^{\circ}C$. However, the joints showed a degradation in strengths at 800 and $850^{\circ}C$, exhibiting strength retentions of 57% and 37%, respectively.

The developments of heavy hydrocarbon reformer for SOFC

  • Bae, Jung-Myeon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.58.2-58.2
    • /
    • 2012
  • Heavy hydrocarbon reforming is a core technology for "Dirty energy smart". Heavy hydrocarbons are components of fossil fuels, biomass, coke oven gas and etc. Heavy hydrocarbon reforming converts the fuels into $H_2$-rich syngas. And then $H_2$-rich syngas is used for the production of electricity, synthetic fuels and petrochemicals. Energy can be used efficiently and obtained from various sources by using $H_2$-rich syngas from heavy hydrocarbon reforming. Especially, the key point of "Dirty energy smart" is using "dirty fuel" which is wasted in an inefficient way. New energy conversion laboratory of KAIST has been researched diesel reforming for solid oxide fuel cell (SOFC) as a part of "Dirty energy smart". Diesel is heavy hydrocarbon fuels which has higher carbon number than natural gas, kerosene and gasoline. Diesel reforming has difficulties due to the evaporation of fuels and coke formation. Nevertheless, diesel reforming technology is directly applied to "Dirty fuel" because diesel has the similar chemical properties with "Dirty fuel". On the other hand, SOFC has advantages on high efficiency and wasted heat recovery. Nippon oil Co. of Japan recently commercializes 700We class SOFC system using city gas. Considering the market situation, the development of diesel reformer has a great ripple effect. SOFC system can be applied to auxiliary power unit and distributed power generation. In addition, "Dirty energy smart" can be realized by applying diesel reforming technology to "Dirty fuel". As well as material developments, multidirectional approaches are required to reform heavy hydrocarbon fuels and use $H_2$-rich gas in SOFC. Gd doped ceria (CGO, $Ce_{1-x}Gd_xO_{2-y}$) has been researched for not only electrolyte materials but also catalysts supports. In addition, catalysts infiltrated electrode over porous $La_{0.8}Sr_{0.2}Ga_{0.8}Mg_{0.2}O_3-{\delta}$ and catalyst deposition at three phase boundary are being investigated to improve the performance of SOFC. On the other hand, nozzle for diesel atomization and post-reforming for light-hydrocarbons removal are examples of solving material problems in multidirectional approaches. Likewise, multidirectional approaches are necessary to realize "Dirty energy smart" like reforming "Dirty fuel" for SOFC.

  • PDF

Preparation of SDC electrolyte film for IT-SOFCs by electrophoretic deposition (EPD를 이용한 IT-SOFC용 SDC 전해질 필름의 제조)

  • Lee, Kyeong-Seop;Jo, Chul-Gi;Kim, Young-Soon;Shin, Hyung-Shik
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.158-158
    • /
    • 2009
  • The electrophoretic deposition(EPD) technique with a wide range of novel applications in the processing of advanced ceramic materials and coatings, has recently gained increasing interest both in academic and industrial sector not only because of the high versatility of its use with different materials and their combinations but also because of its cost-effectiveness requiring simple apparatus. Compared to other advanced shaping techniques, the EPD process is very versatile since it can be modified easily for a specific application. For example, deposition can be made on flat, cylinderical or any other shaped substrate with only minor charge in electrode design and positioning[1]. The synthesis of the nano-sized Ce0.2Sm0.8O1.9(SDC)particles prepared by aurea based low temperature hydrothermal process was investigated in this study[2].When we made the SDC nanoparticles, changed the time of synthesis of the SDC. The SDC nanoparticles were characterized with field-emission scanning electron microscope(FESEM), energy dispersive X-ray analysis(EDX), and X-ray diffraction(XRD). And also we researched the results of our investigation on electrophoretic deposition(EPD) of the SDC particles from its suspension in acetone solution onto a non-conducting NiO-SDC substrate. In principle, it is possible to carry out electrophoretic deposition on non-conducting substrates. In this case, the EPD of SDC particles on a NiO-SDC substrate was made possible through the use of a adequately porous substrate. The continuous pores in the substrates, when saturated with the solvent, helped in establishing a "conductive path" between the electrode and the particles in suspension[3-4]. Deposition rate was found to increase its increasing deposition time and voltage. After annealing the samples $1400^{\circ}C$, we observed that deposited substrate.

  • PDF

Quality Evaluation of Minimally Processed Asian Pears (신선편의 식품화된 신고배의 저장 중 이화학적 품질변화)

  • Kim, Gun-Hee;Cho, Sun-Duk;Kim, Dong-Man
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.1523-1528
    • /
    • 1999
  • The consumer's demands for minimally processed fruits and vegetables have been increased rapidly because of its convenient handling, fresh-like quality as well as producing less wastes from the environmental point of view. Asian pears which are one of the main fruits widely produced and consumed in Korea easily lost their characteristics due to browning and softening after cutting. The objective of this study is to investigate the effects of various treatments on delaying deterioration of sliced Asian pears. 'Shingo' pear slices were treated with various solutions $(1%\;NaCl,\;0.2%\;L-cysteine,\;1%\;CaCl_2\;or\;1%\;calcium\;lactate)$ and were packaged with low density polyethylene $(LDPE,\;60\;{\mu}m)$, ceramic $(CE,\;60\;{\mu}m)$ or vacuum $(Ny/PE,\;80\;{\mu}m)$ film at $20^{\circ}C\;and\;0^{\circ}C$. In order to evaluate the quality of packaged sliced pears, quality index was determined in terms of color, firmness, soluble solids, titratable acidity. ascorbic acid, changes of gas composition, microbial test, and sensory quality. The results showed that sliced 'Shingo' pears packaged with CE and vacuum film maintained better quality than with LDPE at $0^{\circ}C\;and\;20^{\circ}C$. To retard browning and softening. 0.2% L-cysteine and 1% NaCl solutions applied for 1 minute were effective to reduce surface browning of sliced pears, and 1% $CaCl_2$ was the most effective to prevent softening.

  • PDF

Synthesis, Spectral, Characterization, DFT and Biological Studies of New 3-[(3-Chlorophenyl)-hydrazono]-pentane-2,4-dione Metal Complexes

  • Sadeek, Sadeek A.;Zordok, Wael A.;El-Farargy, Ahmed F.;El-Desoky, Sameh I.
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.2
    • /
    • pp.169-178
    • /
    • 2014
  • A new series of metal complexes of V(IV), Pd(II), Pt(IV), Ce(IV) and U(VI) with 3-[(3-chlorophenyl)-hydrazono]-pentane-2,4-dione (Cphpd) were synthesized and characterized by elemental analysis, molar conductivity, magnetic moment measurements, UV-vis, FT-IR and $^1H$ NMR as well as TG-DTG techniques. The data indicated that the Cphpd acts as a bidentate ligand through the hydrazono nitrogen and one keto oxygen. The kinetic parameters have been evaluated by using Coats Redfern (CR) and Horowitz-Metzeger (HM) methods. The thermodynamic data reflected the thermal stability for all complexes. The calculated bond length and the bond stretching force constant, F(U=O), values for $UO_2$ bond are $0.775{\AA}$ and $286.95Nm^{-1}$. The bond lengths, bond angles, dipole moment and the lowest energy model structure of the complexes have been determined with DFT calculations. The antimicrobial activity of the synthesized ligand and its complexes were screened.

Sealing effects of cerium nitrate solution on plasma electrolytic oxidation coating formed on marine grade Al alloy (해양환경용 Al 합금 상에 형성된 플라즈마 전해 산화 코팅층의 질산 세륨 수용액에 의한 봉공 효과)

  • Lee, Jeong-Hyeong;Kim, Seong-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.144-144
    • /
    • 2016
  • 플라즈마 전해 산화법(Plasma electrolytic oxidation)에 의해 형성된 코팅층은 특유의 기공구조로 인해 부식 환경에 노출 시 부식액의 침투가 급속히 이루어지는 단점이 있다. 이를 극복하기 위한 방법으로 유기코팅, sol-gel법, 폴리머 코팅 등에 의해 기공을 봉공(sealing)하는 방법이 제안되고 있다. 본 연구에서는 Al 합금의 플라즈마 전해 산화 처리 후 질산 세륨 수용액(Cerium nitrate solution)에 의한 봉공 효과를 확인하고자 하였다. PEO 코팅을 위한 전해액은 2g/L의 KOH와 $2g/L\;Na_2SiO_3$를 증류수에 용해시켜 준비하였다. PEO 코팅층은 Al 시편을 전해액 내에 위치시켜 양극으로 하고 STS를 음극으로 하여 $0.1A/cm^2$의 펄스 정전류밀도(주파수: 100Hz, 듀티비: 20%)를 15분 동안 인가하여 형성시켰다. 봉공을 위한 실링액은 증류수에 $0.3g/L\;H_2O_2$$1g/L\;H_3BO_3$를 첨가하고, $Ce(NO_3)_3$를 농도 변수로 첨가하여 준비하였으며, PEO 코팅 처리된 시편을 실링액에 침지하여 실링액의 농도와 침지시간을 달리하여 봉공을 실시하였다. 제작된 PEO 코팅층에 대해 SEM, EDS, XRD를 이용한 표면분석을 실시하였으며, 내식성을 확인하고자 동전위분극시험을 실시하였다. 연구 결과, 세륨 실링 처리된 PEO 코팅 층에서 미량의 세륨 성분이 검출되었으나, 세륨계 화합물 생성에 의한 마이크로 크기의 기공의 폐쇄는 관찰되지 않았다. 또한, 전기화학적 특성 평가 결과 실링 처리된 PEO 코팅층의 경우 Al 모재에 비해 2차수 정도 감소된 부식전류밀도를 나타내었다. 이 같은 내식성의 향상은 세륨 성분에 의한 부식 억제 효과 때문으로 판단된다.

  • PDF

Mineralogy and Chemical Properties according to Particle Size Separation of Hwangto (Reddish Residual Soil) used in Feeding of Cattle (한우 사육에 이웅한 황토(풍화토)의 입도분리에 따른 광물성분 및 화학적 특성)

  • 황진연;박현진;양경희;이효민
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.33-43
    • /
    • 2002
  • Mineral composition and chemical properties of Hwangto (reddish residual soil) that used in feeding of cattles at Iksan, Jeollabuk-do, Korea were examined according to particle size separation such as gravel, sand, silt, coarse clay and fine clay. Mineral composition analyses reveal that gravel and sand are mainly composed of quartz and feldspars and that kaolin mineral and illite are dominant in clay and silt. Iron oxides are mainly included in fine clay. According to chemical analyses of major elements, Al, Fe and $H_2O$ contents are increased with decreasing of particle size. This trend well agrees with increase of clay minerals in smaller particles, Chemical analyses of trace elements indicate that contents of Zn, Rb, Sr, Ba, Pb significantly differ with particle sizes. Ba and Sr are included in feldspars since these elements are abundant in sand containing abundant feldspars. Pb and Sm are abundant in sample before particle size separation, but the contents are significantly decreased after separation. Therefore, most of these elements appear to be existed as removable phase. Nb, La, Th, Ce are more abundant in silt. The contents of all the other trace elements tend to be increased in smaller particles containing more clay minerals. The contents of changeable cations and teachable elements in acid and alkali solutions are high in clay samples. All the above results indicate that using the portion of smaller particle of Hwangto for livestock feed rather than bulk Hwangto can improve cation exchangeable capacity, ion leaching capacity and sorption properties.

Temperature Effect on the Optical Properties of YAG and Silicate Phosphor-based White Light Emitting Diodes (온도 변화에 따른 YAG 및 Silicate형광체 기반 백색 LED의 광특성 변화에 대한 연구)

  • Choi, Hyun-Woo;Ko, Jae-Hyeon
    • Korean Journal of Optics and Photonics
    • /
    • v.24 no.3
    • /
    • pp.135-142
    • /
    • 2013
  • Two white light emitting diodes(LEDs) were fabricated by using two kinds of yellow phosphor, YAG:Ce and $(Sr,Ba)_2SiO4:Eu$, and their spectroscopic properties were analyzed as a function of temperature from room temperature to $80^{\circ}C$. The asymmetric double sigmoidal function was applied to both blue and yellow peaks of the emitting spectrum to obtain the center wavelength, the amplitude, the half width, and the skewness parameters. According to this analysis, the center wavelength of the blue peak shifted to longer wavelength while that of the yellow peak shifted to shorter wavelength. In addition, some of the skewness parameters were found to increase upon heating, which indicates that spectrum asymmetry becomes enhanced at higher temperatures. The changes in the color coordinates and the luminous efficacy were larger for the case of silicate-based white LED. These results suggest that the silicate-based white LED is inferior to the YAG-based white LED from the viewpoint of color stability, efficacy and color rendering index.