• 제목/요약/키워드: CdSe/ZnS

검색결과 173건 처리시간 0.055초

다중벽 탄소나노튜브와 다양한 나노입자 복합체의 In-situ 합성법개발 및 구조제어연구 (Study about the In-situ Synthesis and Structure Control of Multi-walled Carbon Nanotubes and their Nanocomposites)

  • 박호석
    • Korean Chemical Engineering Research
    • /
    • 제50권4호
    • /
    • pp.729-732
    • /
    • 2012
  • 본 논문에서 이온성액체를 이용한 초음파화학을 통해서 칼코젠 나노입자를 in-situ로 합성하여서 다중벽 탄소나노튜브(MWCNT) 위에 도포하였다. 1-Butyl-3-methylimidazolium tetrafluoroborate ($BMimBF_4$) 이온성액체를 이용해서 MWCNT의 표면을 기능화하였다. 합성된 MWCNT/$BMimBF_4$/CdTe, MWCNT/$BMimBF_4$/ZnTe, MWCNT/$BMimBF_4$/ZnSe 나노복합체를 TEM과 EDS를 이용해서 분석하였다. 특히, MWCNT/$BMimBF_4$/CdTe, MWCNT/$BMimBF_4$/ZnTe, and MWCNT/$BMimBF_4$/ZnSe 나노복합체는 각각 요철과 같거나, 거칠거나 부드러운 코어-쉘 형태와 같은 특이한 구조를 보여주었다. 본 연구는 반응속도가 다른 전구체로부터 얻어진 이성분 반도체 나노입자를 합성과 동시에 탄소나노튜브에 도포할 수 있는 새로운 합성법을 제시한다.

Mo 패턴을 이용한 3-D 구조의 Cu2ZnSn (SxSe1-x)4 (CZTSSe) 박막형 태양전지 제작 (3-D Structured Cu2ZnSn (SxSe1-x)4 (CZTSSe) Thin Film Solar Cells by Mo Pattern using Photolithography)

  • 조은진;강명길;신형호;윤재호;문종하;김진혁
    • Current Photovoltaic Research
    • /
    • 제5권1호
    • /
    • pp.20-24
    • /
    • 2017
  • Recently, three-dimensional (3D) light harvesting structures are highly attracted because of their high light harvesting capacity and charge collection efficiencies. In this study, we have fabricated $Cu_2ZnSn(S_xSe_{1-x})_4$ based 3D thin film solar cells on PR patterned Molybdenum (Mo) substrates using photolithography technique. Specifically, Mo patterns were deposited on PR patterned Mo substrates by sputtering and the thin Cu-Zn-Sn stacked layer was deposited over this Mo patterns by sputtering technique. The stacked Zn-Sn-Cu precursor thin films were sulfo-selenized to form CZTSSe pattern. Finally, CZTSSe absorbers were coated with thin CdS layer using chemical bath deposition and ZnO window layer was deposited over CZTSSe/CdS using DC sputtering technique. Fabricated 3-D solar cells were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF) analysis, Field-emission scanning electron microscopy (FE-SEM) to study their structural, compositional and morphological properties, respectively. The 3% efficiency is achieved for this kind of solar cell. Further efforts will be carried out to improve the performance of solar cell through various optimizations.

HWE에 의한 $Cd_{1-x}Zn_xS $박막의 성장과 광전도 특성 (Growth of $Cd_{1-x}Zn_xS $ Thin films Using Hot Wall Epitaxy Method and Their Photoconductive Characteristics)

  • 홍광준;유상하
    • 한국결정학회지
    • /
    • 제9권1호
    • /
    • pp.53-63
    • /
    • 1998
  • HWE 방법에 의해 Cd1-xZnxS 박막을 (100)방향을 Si 기판 위에 성장시켰다. 증발원과 기판의 온도를 각각 600℃, 440℃로 하여 성장시킨 Cd1-xZnxS 박막의 이중 결정 X-선 요동곡선(DCRC)의 반폭치(FWHM)값이 265 arcsec로 가장 작았다. Van der Pauw 방법으로 Hall효과를 측정하여 운반자 농도와 Hall 이동도의 온도 의존성을 조사하였다. 광전도 셀의 특성으로 spectral response, 최대 허용소비전력(MAPD), 광전류와 암전류(pc/dc)의 비 및 응답시간을 측정하였다. Cd0.53Zn0.47S광전도 셀을 Cu증기 분위기에서 열처리한 경우 감도(γ)는 0.99, pc/dc은 1.65 ×10 7 그리고 최대 허용소비전력(MAPD)은 338mW, 오름시간 (rise time)은 9.7ms, 내림시간(decay time)은 9.3ms로 가장 좋은 광전도 특성을 얻었다.

  • PDF

Development of the 3 Dimensional ZnO Nanostructures for the Highly Efficient Quantum Dot Sensitized Solar Cells

  • 김희진;용기중
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.672-672
    • /
    • 2013
  • 본 연구에서는 수열합성법을 기반으로 한 3차원 ZnO 나노구조의 합성을 통해 효율적인 양자점 감응형 태양전지로의 응용을 하고 그 특성을 평가하였다. 기존의 1차원 ZnO 나노구조의 경우 높은 전자이동도와 구조적으로 얻을 수 있는 방향성 있는 전자의 효율적인 전달을 통해 효과적인 광전극으로 많은 관심을 받아왔다. 하지만 나노파티클 기반의 필름에 비해 표면적이 크게 떨어지기 때문에 효과적인 흡광이 어렵다는 단점이 존재하여 높은 효율특성을 내지는 못하였다. 본 연구에서는 이러한 단점을 극복하면서 기존 ZnO 나노선의 장점을 극대화 하기 위해 성장시킨 ZnO 나노선 위에 추가적으로 가지를 형성하여 표면적 향상과 효과적인 전자전달 특성을 얻고자 하였다. 3차원 ZnO 나노구조는citrate 계열의 capping agent의 첨가를 통한 수열 합성법을 통해 1차원의 ZnO 나노선 위에 nanosheet 형식의 가지를 형성하였고 이는 빛의 효과적인 산란특성 및 표면적 향상을 통한 CdS, CdSe의 양자점 증착량을 증가시키는 효과를 얻을 수 있었다. 이러한 태양전지의 소자 특성은 SEM, TEM을 통한 구조 특성평가 및 DRS, J-V curve 및 IPCE를 통한 광학적 특성평가를 통해 확인하였다.

  • PDF

Synthesis of CdSe Multi-shell Structured Nanocrystal Quantum Dot through the Continuous Flow Reactor

  • Kim, Kyung-Nam;No, Jae-Hong;Jeong, So-Hee
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.417-417
    • /
    • 2012
  • For desired optical properties of QDs, it is very important to reduce the presence of defects on their surfaces. Passivation of surface defects using larger band gap materials is the most effective way. Some groups successfully synthesized Cd based multi-shell structured quantum dots and improved its optical properties. However, its productivity has limit because of the amounts of glass ware and space. In this research, we try to synthesize Cd based multi-shell structured nanocrystal quantum dots to overcome demerits of conventional batch synthetic method. This reactor composed pump, SUS reaction part (3.2 mm stainless steel and furnace) and batch mixer. We successively synthesized CdSe/CdS/ZnS quantum dot at this reactor in one step.

  • PDF

ITO-Ag NW기반 투명 양자점 발광 다이오드 (ITO-Ag NW based Transparent Quantum Dot Light Emitting Diode)

  • 강태욱;김효준;정용석;김종수
    • 한국재료학회지
    • /
    • 제30권8호
    • /
    • pp.421-425
    • /
    • 2020
  • A transparent quantum dot (QD)-based light-emitting diode (LED) with silver nanowire (Ag NW) and indium-tin oxide (ITO) hybrid electrode is demonstrated. The device consists of an Ag NW-ITO hybrid cathode (-), zinc oxide, poly (9-vinylcarbazole) (PVK), CdSe/CdZnS QD, tungsten trioxide, and ITO anode (+). The device shows pure green-color emission peaking at 548 nm, with a narrow spectral half width of 43 nm. Devices with hybrid cathodes show better performances, including higher luminance with higher current density, and lower threshold voltage of 5 V, compared with the reference device with a pure Ag NW cathode. It is worth noting that our transparent device with hybrid cathode exhibits a lifetime 9,300 seconds longer than that of a device with Ag NW cathode. This is the reason that the ITO overlayer can protect against oxidization of Ag NW, and the Ag NW underlayer can reduce the junction resistance and spread the current efficiently. The hybrid cathode for our transparent QD LED can applicable to other quantum structure-based optical devices.

Fabrication of ZnO/TiO2 Nanoheterostructure and Its Application to Photoelectrochemical Cell

  • 송홍선;김희진;용기중
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.459.1-459.1
    • /
    • 2014
  • Because both $TiO_2$ and ZnO has superior characteristic optically and electrically, there are various of research for these materials. However, they have large band gap energy which correspond with not visible light, but UV light. To make up for this disadvantage, Quantum dots (CdS, CdSe) which can absorb the visible light could be deposited on $ZnO/TiO_2$ nanostructure so that the the photoelectrochecmical cell can absorb the light that has larger region of wavelength. Both $TiO_2$ and ZnO can be grown to one-dimensional nanowire structure at low temperature through solutional method. Three-dimensional hierarcical $ZnO/TiO_2$ nanostructure is fabricated by applying these process. Large surface area of this structure make the light absorbed more efficiently. Through type 2 like-cascade energy band structure of nanostructure, the efficient separation of electron-hole pairs is expected. Photoelectrochemical charateristics are found by using these nanostructure to photoelectrode.

  • PDF

Effects of reversible metastable defect induced by illumination on Cu(In,Ga)Se2 solar cell with CBD-ZnS buffer layer

  • Lee, Woo-Jung;Yu, Hye-Jung;Cho, Dae-Hyung;Wi, Jae-Hyung;Han, Won-Seok;Yoo, Jisu;Yi, Yeonjin;Song, Jung-Hoon;Chung, Yong-Duck
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.431-431
    • /
    • 2016
  • Typical Cu(In,Ga)Se2 (CIGS)-based solar cells have a buffer layer between CIGS absorber layer and transparent ZnO front electrode, which plays an important role in improving the cell performance. Among various buffer materials, chemical bath deposition (CBD)-ZnS is being steadily studied to alternative to conventional CdS and the efficiency of CBD-ZnS/CIGS solar cell shows the comparable values with that of CdS/CIGS solar cell. The intriguing thing is that reversible changes occur after exposure to illumination due to the metastable defect states in completed ZnS/CIGS solar cell, which induces an improvement of solar cell performance. Thus, it implies that the understanding of metastable defects in CBD-ZnS/CIGS solar cell is important issue. In this study, we fabricate the ITO/i-ZnO/CBD-ZnS/CIGS/Mo/SLG solar cells by controlling the NH4OH mole concentration (from 2 M to 3.5 M) of CBD-ZnS buffer layer and observe their conversion efficiency with and without light soaking for 1 hr. From the results, NH4OH mole concentration and light exposure can significantly affect the CBD-ZnS/CIGS solar cell performance. In order to investigate that which layer can contain metastable defect states to influence on solar cell performance, impedance spectroscopy and capacitance profiling technique with exposure to illumination have been applied to CBD-ZnS/CIGS solar cell. These techniques give a very useful information on the density of states within the bandgap of CIGS, free carriers density, and light-induced metastable effects. Here, we present the rearranged charge distribution after exposure to illumination and suggest the origin of the metastable defect states in CBD-ZnS/CIGS solar cell.

  • PDF

Anisotropic absorption of CdSe/ZnS quantum rods embedded in polymer film

  • Mukhina, Maria V.;Maslov, Vladimir G.;Baranov, Alexander V.;Artemyev, Mikhail V.;Fedorov, Anatoly V.
    • Advances in nano research
    • /
    • 제1권3호
    • /
    • pp.153-158
    • /
    • 2013
  • An approach to achieving of spatially homogeneous, ordered ensemble of semiconductor quantum rods in polymer film of polyvinyl butyral is reported. The CdSe/ZnS quantum rods are embedded to the polymer film. Obtained film is stretched up to four times to its initial length. A concentration of quantum rods in the samples is around $2{\times}10^{-5}$ M. The absorption spectra, obtained in the light with orthogonal polarization, confirm the occurrence of spatial ordering in a quantum rod ensemble. Anisotropy of the optical properties in the ordered quantum rod ensemble is examined. The presented method can be used as a low-cost solution for preparing the nanostructured materials with anisotropic properties and high concentration of nanocrystals.

Cu 도핑과 열처리가 ZnTe 박막의 물성에 미치는 영향 (Influence of Cu Doping and Heat Treatments on the Physical Properties of ZnTe Films)

  • 최동일;윤세왕;김동환
    • 한국재료학회지
    • /
    • 제9권2호
    • /
    • pp.173-180
    • /
    • 1999
  • Thermally evaporated ZnTe films were investigated as a back contact material for CdS/CdTe solar cells. Two deposition methods, coevaporation and double-layer methods, were used for Cu doping in ZnTe films. ZnTe layers (0.2$\mu\textrm{m}$ thick) were deposited either on glass or on CdS/CdTe substrates without intentional heating of the substrates. Post-deposition annealing was performed at 200,300 and $400^{\circ}C$ for 3,6 and 9 minutes, respectively. Band gap of 2.2eV was measured for both undoped and doped films and a slight change in the shape of absorption spectra was observed in Cu-doped samples after annealing at $400^{\circ}C$. The resistivity of as-deposited ZnTe decreased from 10\ulcorner~10\ulcornerΩcm down to 10\ulcornerΩcm as Cu concentration increased from 0 to 14 at.%. There was not a noticeable change in less of annealing temperature up to $300^{\circ}C$ whereas films annealed at $400^{\circ}C$ revealed hexagonal (101) orientations as well. Some of Cu-doped ZnTe revealed x-ray diffraction (XRD) peaks related with Cu\ulcornerTe(x=1.75~2). Grain growth was observed from about 20nm in as-deposited films to 50nm after annealing at $400^{\circ}C$ by scanning electron microscopy (SEM). Cu distribution in ZnTe films was not uniform according to Auger electron spectroscopy (AES) measurements.

  • PDF