• Title/Summary/Keyword: CdSe/CdZnS

Search Result 173, Processing Time 0.032 seconds

Chemical Speciation of Heavy Metals in Soils of Jeju Island, Korea (제주도 토양 중 중금속의 화학적 형태)

  • Hyun, Sung-Su;Kim, Se-Ra;Lee, Min-Gyu;Kam, Sang-Kyu
    • Journal of Environmental Science International
    • /
    • v.26 no.7
    • /
    • pp.847-858
    • /
    • 2017
  • For 26 soil series distributed more than 1% among 63 soil series in Jeju Island, natural uncultivated soil samples were collected. For these soils, the chemical speciation of eight heavy metals (Cd, Cr, Cu, Mn, Ni, Pb, V, and Zn) was examined. Further, the Plant Bioavailability (PB) and Mobility Factor (MF) of these heavy metals were evaluated using Tessier's 5-step sequential extraction method (exchangeable, carbonate, reducible (bound to Fe/Mn oxides), oxidizable (bound to organic matter), and residual fraction). The main form present was residual fraction for Cd and Zn; residual and oxidizable fractions for Cr, Cu, Ni, and Pb; reducible fraction for Mn; and carbonate fraction for V. The average plant availability and average mobility factor were found to be V (57.37%) > Zn (12.49%) > Cd (11.76%) > Cu (11.19%) > Pb (9.37%) > Cr (9.09%) > Mn (3.13%) > Ni (2.63%), and Mn (61.04%) > V (59.94%) > Zn (31.54%) > Cd (17.65%) > Cr (15.66%) > Ni (13.89%) > Pb (13.80%) > Cu (13.53%), respectively.

Electrical and Optical Characteristics of QD-LEDs Using InP/ZnSe/ZnS Quantum Dot (InP/ZnSe/ZnS 양자점을 이용한 QD-LED의 전기 및 광학적 특성)

  • Choi, Jae-Geon;Moon, Dae-Gyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.3
    • /
    • pp.151-155
    • /
    • 2014
  • We have developed quantum dot light emitting diodes (QD-LEDs) using a InP/ZnSe/ZnS multi-shell QD emission layer. The hybrid structure of organic hole transport layer/QD/organic electron transport layer was used for fabricating QD-LEDs. Poly(4-butylphenyl-diphenyl-amine) (poly-TPD) and tris[2,4,6-trimethyl-3-(pyridin-3-yl)phenyl]borane (3TPYMB) molecules were used as hole-transporting and electron-transporting layers, respectively. The emission, current efficiency, and driving characteristics of QD-LEDs with 50, 65 nm thick 3TPYMB layers were investigated. The QD-LED with a 50 nm thick 3TPYMB layer exhibited a maximum current efficiency of 1.3 cd/A.

Development of the 3 Dimensional ZnO Nanostructures for the Highly Efficient Quantum Dot Sensitized Solar Cells

  • Kim, Hui-Jin;Yong, Gi-Jung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.672-672
    • /
    • 2013
  • 본 연구에서는 수열합성법을 기반으로 한 3차원 ZnO 나노구조의 합성을 통해 효율적인 양자점 감응형 태양전지로의 응용을 하고 그 특성을 평가하였다. 기존의 1차원 ZnO 나노구조의 경우 높은 전자이동도와 구조적으로 얻을 수 있는 방향성 있는 전자의 효율적인 전달을 통해 효과적인 광전극으로 많은 관심을 받아왔다. 하지만 나노파티클 기반의 필름에 비해 표면적이 크게 떨어지기 때문에 효과적인 흡광이 어렵다는 단점이 존재하여 높은 효율특성을 내지는 못하였다. 본 연구에서는 이러한 단점을 극복하면서 기존 ZnO 나노선의 장점을 극대화 하기 위해 성장시킨 ZnO 나노선 위에 추가적으로 가지를 형성하여 표면적 향상과 효과적인 전자전달 특성을 얻고자 하였다. 3차원 ZnO 나노구조는citrate 계열의 capping agent의 첨가를 통한 수열 합성법을 통해 1차원의 ZnO 나노선 위에 nanosheet 형식의 가지를 형성하였고 이는 빛의 효과적인 산란특성 및 표면적 향상을 통한 CdS, CdSe의 양자점 증착량을 증가시키는 효과를 얻을 수 있었다. 이러한 태양전지의 소자 특성은 SEM, TEM을 통한 구조 특성평가 및 DRS, J-V curve 및 IPCE를 통한 광학적 특성평가를 통해 확인하였다.

  • PDF

Influence of Cu Doping and Heat Treatments on the Physical Properties of ZnTe Films (Cu 도핑과 열처리가 ZnTe 박막의 물성에 미치는 영향)

  • Choe, Dong-Il;Yun, Se-Wang;Kim, Dong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.9 no.2
    • /
    • pp.173-180
    • /
    • 1999
  • Thermally evaporated ZnTe films were investigated as a back contact material for CdS/CdTe solar cells. Two deposition methods, coevaporation and double-layer methods, were used for Cu doping in ZnTe films. ZnTe layers (0.2$\mu\textrm{m}$ thick) were deposited either on glass or on CdS/CdTe substrates without intentional heating of the substrates. Post-deposition annealing was performed at 200,300 and $400^{\circ}C$ for 3,6 and 9 minutes, respectively. Band gap of 2.2eV was measured for both undoped and doped films and a slight change in the shape of absorption spectra was observed in Cu-doped samples after annealing at $400^{\circ}C$. The resistivity of as-deposited ZnTe decreased from 10\ulcorner~10\ulcornerΩcm down to 10\ulcornerΩcm as Cu concentration increased from 0 to 14 at.%. There was not a noticeable change in less of annealing temperature up to $300^{\circ}C$ whereas films annealed at $400^{\circ}C$ revealed hexagonal (101) orientations as well. Some of Cu-doped ZnTe revealed x-ray diffraction (XRD) peaks related with Cu\ulcornerTe(x=1.75~2). Grain growth was observed from about 20nm in as-deposited films to 50nm after annealing at $400^{\circ}C$ by scanning electron microscopy (SEM). Cu distribution in ZnTe films was not uniform according to Auger electron spectroscopy (AES) measurements.

  • PDF

High Performance of SWIR HgCdTe Photovoltaic Detector Passivated by ZnS

  • Lanh, Ngoc-Tu;An, Se-Young;Suh, Sang-Hee;Kim, Jin-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.128-132
    • /
    • 2004
  • Short wave infrared (SWIR) photovoltaic devices have been fabricated from metal organic vapour phase epitaxy (MOVPE) grown n- on p- HgCdTe films on GaAs substrates. The MOVPE grown films were processed into mesa type discrete devices with wet chemical etching employed for meas delineation and ZnS surface passivatlon. ZnS was thermally evaporated from effusion cell in an ultra high vacuum (UHV) chamber. The main features of the ZnS deposited from effusion cell in UHV chamber are low fixed surface charge density, and small hysteresis. It was found that a negative flat band voltage with -0.6 V has been obtained for Metal Insulator Semiconductor (MIS) capacitor which was evaporated at $910^{\circ}C$ for 90 min. Current-Voltage (I-V) and temperature dependence of the I-V characteristics were measured in the temperature range 80 - 300 K. The Zero bias dynamic resistance-area product ($R_{0}A$) was about $7500{\Omega}-cm^{2}$ at room temperature. The physical mechanisms that dominate dark current properties in the HgCdTe photodiodes are examined by the dependence of the $R_{0}A$ product upon reciprocal temperature. From theoretical considerations and known current expressions for thermal and tunnelling process, the device is shown to be diffusion limited up to 180 K and g-r limited at temperature below this.

Fabrication of ZnO/TiO2 Nanoheterostructure and Its Application to Photoelectrochemical Cell

  • Song, Hong-Seon;Kim, Hui-Jin;Yong, Gi-Jung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.459.1-459.1
    • /
    • 2014
  • Because both $TiO_2$ and ZnO has superior characteristic optically and electrically, there are various of research for these materials. However, they have large band gap energy which correspond with not visible light, but UV light. To make up for this disadvantage, Quantum dots (CdS, CdSe) which can absorb the visible light could be deposited on $ZnO/TiO_2$ nanostructure so that the the photoelectrochecmical cell can absorb the light that has larger region of wavelength. Both $TiO_2$ and ZnO can be grown to one-dimensional nanowire structure at low temperature through solutional method. Three-dimensional hierarcical $ZnO/TiO_2$ nanostructure is fabricated by applying these process. Large surface area of this structure make the light absorbed more efficiently. Through type 2 like-cascade energy band structure of nanostructure, the efficient separation of electron-hole pairs is expected. Photoelectrochemical charateristics are found by using these nanostructure to photoelectrode.

  • PDF

Anisotropic absorption of CdSe/ZnS quantum rods embedded in polymer film

  • Mukhina, Maria V.;Maslov, Vladimir G.;Baranov, Alexander V.;Artemyev, Mikhail V.;Fedorov, Anatoly V.
    • Advances in nano research
    • /
    • v.1 no.3
    • /
    • pp.153-158
    • /
    • 2013
  • An approach to achieving of spatially homogeneous, ordered ensemble of semiconductor quantum rods in polymer film of polyvinyl butyral is reported. The CdSe/ZnS quantum rods are embedded to the polymer film. Obtained film is stretched up to four times to its initial length. A concentration of quantum rods in the samples is around $2{\times}10^{-5}$ M. The absorption spectra, obtained in the light with orthogonal polarization, confirm the occurrence of spatial ordering in a quantum rod ensemble. Anisotropy of the optical properties in the ordered quantum rod ensemble is examined. The presented method can be used as a low-cost solution for preparing the nanostructured materials with anisotropic properties and high concentration of nanocrystals.

Adsorption Effect of Heavy Metals (Zn, Ni, Cd, Cu) in Aqueous Solution Using Bottom Ash of Biomass Power Plant (바이오매스 발전소 저회를 활용한 수용액 내 중금속(Zn, Ni, Cd, Cu) 흡착 효과)

  • So-Hui Kim;Seung-Gyu Lee;Jin-Ju Yun;Jae-Hyuk Park;Se-Won Kang;Ju-Sik Cho
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.4
    • /
    • pp.252-260
    • /
    • 2022
  • BACKGROUND: The number of biomass power plants is increasing around the world and the amount of wastes from power plants is expected to increase. But the bottom ash (BA) is not recycled and has been dumped in landfill. This study was conducted to find out functional groups of BA and adsorption rate of heavy metals on BA. METHODS AND RESULTS: The BA was dried in oven at 105℃ for 24 hours, and characterized by analyzing the chemistry, functional group, and surface area. The adsorption rates of heavy metals on BA were evaluated by different concentration, time, and pH. As a result, the adsorption amount of the heavy metals was high in the order of Zn> Cu> Cd> Ni and the removal rates of Zn, Cu, Cd, and Ni by BA was 49.75, 30.20, 32.46, and 36.10%, respectively. Also, the maximum adsorption capacity of BA was different by the heavy metal in the environmental conditions, and it was suggested that the isotherms for Zn, Ni, Cd, and Cu were adequate to Langmuir model. CONCLUSION(S): It is suggested that it would be effective to remove heavy metals in aqueous solution by using BA from biomass power plants in South Korea.

Carrier Transport of Quantum Dot LED with Low-Work Function PEIE Polymer

  • Lee, Kyu Seung;Son, Dong Ick;Son, Suyeon;Shin, Dong Heon;Bae, Sukang;Choi, Won Kook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.432.2-432.2
    • /
    • 2014
  • Recently, colloidal core/shell type quantum dots lighting-emitting diodes (QDLEDs) have been extensively studied and developed for the future of optoelectronic applications. In the work, we fabricate an inverted CdSe/ZnS quantum dot (QD) based light-emitting diodes (QDLED)[1]. In order to reduce work function of indium tin oxide (ITO) electrode for inverted structure, a very thin (<10 nm) polyethylenimine ethoxylated (PEIE) is used as surface modifier[2] instead of conventional metal oxide electron injection layer. The PEIE layer substantially reduces the work function of ITO electrodes which is estimated to be 3.08 eV by ultraviolet photoemission spectroscopy (UPS). From transmission electron microscopy (TEM) study, CdSe/ZnS QDs are uniformly distributed and formed by a monolayer on PEIE layer. In this inverted QD LED, two kinds of hybrid organic materials, [poly (9,9-di-n-octyl-fluorene-alt-benzothiadiazolo)(F8BT) + poly(N,N'-bis (4-butylphenyl)-N,N'-bis(phenyl)benzidine (poly-TPD)] and [4,4'-N,N'-dicarbazole-biphenyl (CBP) + poly-TPD], were adopted as hole transport layer having high highest occupied molecular orbital (HOMO) level for improving hole transport ability. At a low-operating voltage of 8 V, the device emits orange and red spectral radiation with high brightness up to 2450 and 1420 cd/m2, and luminance efficacy of 1.4 cd/A and 0.89 cd/A, respectively, at 7 V applied bias. Also, the carrier transport mechanisms for the QD LEDs are described by using several models to fit the experimental I-V data.

  • PDF

3-D Structured Cu2ZnSn (SxSe1-x)4 (CZTSSe) Thin Film Solar Cells by Mo Pattern using Photolithography (Mo 패턴을 이용한 3-D 구조의 Cu2ZnSn (SxSe1-x)4 (CZTSSe) 박막형 태양전지 제작)

  • Jo, Eunjin;Gang, Myeng Gil;Shin, hyeong ho;Yun, Jae Ho;Moon, Jong-ha;Kim, Jin Hyeok
    • Current Photovoltaic Research
    • /
    • v.5 no.1
    • /
    • pp.20-24
    • /
    • 2017
  • Recently, three-dimensional (3D) light harvesting structures are highly attracted because of their high light harvesting capacity and charge collection efficiencies. In this study, we have fabricated $Cu_2ZnSn(S_xSe_{1-x})_4$ based 3D thin film solar cells on PR patterned Molybdenum (Mo) substrates using photolithography technique. Specifically, Mo patterns were deposited on PR patterned Mo substrates by sputtering and the thin Cu-Zn-Sn stacked layer was deposited over this Mo patterns by sputtering technique. The stacked Zn-Sn-Cu precursor thin films were sulfo-selenized to form CZTSSe pattern. Finally, CZTSSe absorbers were coated with thin CdS layer using chemical bath deposition and ZnO window layer was deposited over CZTSSe/CdS using DC sputtering technique. Fabricated 3-D solar cells were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF) analysis, Field-emission scanning electron microscopy (FE-SEM) to study their structural, compositional and morphological properties, respectively. The 3% efficiency is achieved for this kind of solar cell. Further efforts will be carried out to improve the performance of solar cell through various optimizations.