• Title/Summary/Keyword: CdS thin film

Search Result 187, Processing Time 0.038 seconds

Analysis of Photovoltaic Performance Improvement of Cu2Zn1-xCdxSn(SxSe1-x)4 Thin Film Solar Cells by Controlling Cd2+ Element Alloying Time Using CBD Method (CBD 공법을 이용하여 Cd2+ 원소 Alloying 시간을 조절한 Cu2Zn1-xCdxSn(SxSe1-x)4 박막 태양전지의 광전지 성능 향상 분석)

  • Sang Woo, Park;Suyoung, Jang;Jun Sung, Jang;Jin Hyeok, Kim
    • Korean Journal of Materials Research
    • /
    • v.32 no.11
    • /
    • pp.481-488
    • /
    • 2022
  • The Cu2ZnSn(SxSe1-x)4 (CZTSSe) absorbers are promising thin film solar cells (TFSCs) materials, to replace existing Cu(In,Ga)Se2 (CIGS) and CdTe photovoltaic technology. However, the best reported efficiency for a CZTSSe device, of 13.6 %, is still too low for commercial use. Recently, partially replacing the Zn2+ element with a Cd2+element has attracting attention as one of the promising strategies for improving the photovoltaic characteristics of the CZTSSe TFSCs. Cd2+ elements are known to improve the grain size of the CZTSSe absorber thin films and improve optoelectronic properties by suppressing potential defects, causing short-circuit current (Jsc) loss. In this study, the structural, compositional, and morphological characteristics of CZTSSe and CZCTSSe thin films were investigated using X-ray diffraction (XRD), X-ray fluorescence spectrometer (XRF), and Field-emission scanning electron microscopy (FE-SEM), respectively. The FE-SEM images revealed that the grain size improved with increasing Cd2+ alloying in the CZTSSe thin films. Moreover, there was a slight decrease in small grain distribution as well as voids near the CZTSSe/Mo interface after Cd2+ alloying. The solar cells prepared using the most promising CZTSSe absorber thin films with Cd2+ alloying (8 min. 30 sec.) exhibited a power conversion efficiency (PCE) of 9.33 %, Jsc of 34.0 mA/cm2, and fill factor (FF) of 62.7 %, respectively.

The Study on development of a SAW SO$_2$ gas sensor (표면탄성파를 이용한 아황산 가스센서 개발에 관한 연구)

  • Lee, Young-Jin;Kim, Hak-Bong;Roh, Yong-Rae;Cho, Hyun-Min;Baik, Sung;,
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.89-94
    • /
    • 1997
  • A new type SO$_2$ gas sensor with a particular inorganic thin film on SAW devices was developed. The sensor consisted of twin SAW oscillators of the center frequency of 54 MHz fabricated on the LiTaO$_3$ piezoelectric single crystal. One delay line of the sensor was coated with a CdS thin film that selectively adsorbed and desorbed SO$_2$, while the other was uncoated for use as a stable reference. Deposition of the CdS thin film was carried out by the spray pyrolysis method using an ultrasonic nozzle. The sensor could measure the concentration in air less than 0.25 parts per million of SO$_2$. Stability of the sensor turned out to be as good as less than 20ppm, recovery time after each measurement was as short as 5 minutes. Repeatability of the measurement was confirmed through so many reiterated experiments. Hence, the SAW sensor developed through this work showed promising performance as a microsensing tool of SO$_2$. Further work required to improve the performance of the sensor includes enhancement of the reactivity of the CdS thin film with SO$_2$ through appropriate dopant addition, an increase of the center frequency of the SAW device.

  • PDF

High Performance of SWIR HgCdTe Photovoltaic Detector Passivated by ZnS

  • Lanh, Ngoc-Tu;An, Se-Young;Suh, Sang-Hee;Kim, Jin-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.128-132
    • /
    • 2004
  • Short wave infrared (SWIR) photovoltaic devices have been fabricated from metal organic vapour phase epitaxy (MOVPE) grown n- on p- HgCdTe films on GaAs substrates. The MOVPE grown films were processed into mesa type discrete devices with wet chemical etching employed for meas delineation and ZnS surface passivatlon. ZnS was thermally evaporated from effusion cell in an ultra high vacuum (UHV) chamber. The main features of the ZnS deposited from effusion cell in UHV chamber are low fixed surface charge density, and small hysteresis. It was found that a negative flat band voltage with -0.6 V has been obtained for Metal Insulator Semiconductor (MIS) capacitor which was evaporated at $910^{\circ}C$ for 90 min. Current-Voltage (I-V) and temperature dependence of the I-V characteristics were measured in the temperature range 80 - 300 K. The Zero bias dynamic resistance-area product ($R_{0}A$) was about $7500{\Omega}-cm^{2}$ at room temperature. The physical mechanisms that dominate dark current properties in the HgCdTe photodiodes are examined by the dependence of the $R_{0}A$ product upon reciprocal temperature. From theoretical considerations and known current expressions for thermal and tunnelling process, the device is shown to be diffusion limited up to 180 K and g-r limited at temperature below this.

Development of a New Double Buffer Layer for Cu(In, Ga) $Se_2$ Solar Cells

  • Larina, Liudmila;Kim, Ki-Hwan;Yoon, Kyung-Hoon;Ahn, Byung-Tae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.152-153
    • /
    • 2006
  • The new approach to buffer layer design for CIGS solar cells that permitted to reduce the buffer absorption losses in the short wavelength range and to overcome the disadvantages inherent to Cd-free CIGS solar cells was proposed. A chemical bath deposition method has been used to produce a high duality buffer layer that comprises thin film of CdS and Zn-based film. The double layer was grown on either ITO or CIGS substrates and its morphological, structural and optical properties were characterized. The Zn-based film was described as the ternary compound $ZnS_x(OH)_y$. The composition of the $ZnS_x(OH)_y$ layer was not uniform throughout its thickness. $ZnS_x(OH)_y$/CdS/substrate region was a highly intermixed region with gradually changing composition. The short wavelength cut-off of double layer was shifted to shorter wavelength (400nm) compared to that (520 nm) for the standard CdS by optimization of the double buffer design. The results show the way to improve the light energy collection efficiency of the nearly cadmium-free CIGS-based solar cells.

  • PDF

Growth and Characterization of $CdGa_2Se_4$ Single Crystal Thin Films by Hot Wall Epitaxy (Hot Wall Epitaxy (HWE)에 의한 $CdGa_2Se_4$ 단결정 박막 성장과 특성)

  • Choi, S.P.;Hong, K.J.
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.6
    • /
    • pp.328-337
    • /
    • 2001
  • The stochiometric mix of evaporating materials for the $CdGa_2Se_4$ single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films, $CdGa_2Se_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were $630^{\circ}C$ and $420^{\circ}C$, respectively. The crystalline structure of single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $CdGa_2Se_4$ single crystal thin films measured from Hall effect by van der Pauw method are $8.27{\times}10^{17}cm^{-3}$, $345\;cm^2/V{\cdot}s$ at 293 K, respectively. From the photocurrent spectrum by illumination of perpendicular light on the c-axis of the $CuInSe_2$ single crystal thin film, we have found that the values of spin orbit splitting ${\Delta}So$ and the crystal field splitting ${\Delta}Cr$ were 106.5 meV and 418.9 meV at 10 K, respectively. From the photoluminescence measurement on $CdGa_2Se_4$ single crystal thin film, we observed free excition ($E_x$) existing only high quality crystal and neutral bound exiciton ($D^{\circ}$, X) having very strong peak intensity. Then, the full-width-at -half-maximum(FWHM) and binding energy of neutral donor bound excition were 8 meV and 13.7 meV, respectivity. By Haynes rule, an activation energy of impurity was 137 meV.

  • PDF

3-D Structured Cu2ZnSn (SxSe1-x)4 (CZTSSe) Thin Film Solar Cells by Mo Pattern using Photolithography (Mo 패턴을 이용한 3-D 구조의 Cu2ZnSn (SxSe1-x)4 (CZTSSe) 박막형 태양전지 제작)

  • Jo, Eunjin;Gang, Myeng Gil;Shin, hyeong ho;Yun, Jae Ho;Moon, Jong-ha;Kim, Jin Hyeok
    • Current Photovoltaic Research
    • /
    • v.5 no.1
    • /
    • pp.20-24
    • /
    • 2017
  • Recently, three-dimensional (3D) light harvesting structures are highly attracted because of their high light harvesting capacity and charge collection efficiencies. In this study, we have fabricated $Cu_2ZnSn(S_xSe_{1-x})_4$ based 3D thin film solar cells on PR patterned Molybdenum (Mo) substrates using photolithography technique. Specifically, Mo patterns were deposited on PR patterned Mo substrates by sputtering and the thin Cu-Zn-Sn stacked layer was deposited over this Mo patterns by sputtering technique. The stacked Zn-Sn-Cu precursor thin films were sulfo-selenized to form CZTSSe pattern. Finally, CZTSSe absorbers were coated with thin CdS layer using chemical bath deposition and ZnO window layer was deposited over CZTSSe/CdS using DC sputtering technique. Fabricated 3-D solar cells were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF) analysis, Field-emission scanning electron microscopy (FE-SEM) to study their structural, compositional and morphological properties, respectively. The 3% efficiency is achieved for this kind of solar cell. Further efforts will be carried out to improve the performance of solar cell through various optimizations.

Growth and Properties of the $Cd_{1-x}Zn_xS$ Thin Film by Co-evaporation (동시증착에 의한 $Cd_{1-x}Zn_xS$ 박막제작 및 특성에 관한 연구)

  • Lee, J.H.;Lee, H.Y.;Song, W.C.;Park, Y.K.;Shin, S.H.;Shin, J.H.;Park, K.J.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1283-1285
    • /
    • 1997
  • In this paper, structural, optical and electrical properties of $Cd_{1-x}Zn_xS$ thin films prepared by co-evaporation method were studied. The crystal structure of $Cd_{1-x}Zn_xS$ films deposited at a substrate temperature of $150^{\circ}C$ was hexagonal with the c axis aligned perpendicular to the substrate. As increasing composition parameter x, the intensity of (002) peak decreased, which means poor crystalline and decreasing of preferential orientation. The optical bandgap of $Cd_{1-x}Zn_xS$ films varies from 2.41eV for CdS to 3.48eV for ZnS with x. The resistivity of the $Cd_{1-x}Zn_xS$ films increased with x.

  • PDF

Characterization of Chemically Deposited CdS Buffer Layer for High Efficiency CIGS Solar Cells

  • Kim, Donguk;Lee, Sooho;Lee, Jaehyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.459.2-459.2
    • /
    • 2014
  • CdTe계와 CGIS계 태양전지의 광투과층으로 CdS 박막이 많이 사용된다. Cds 박막의 필요한 물성으로는 높은 광투과도와 얇은 두께이다. 광투과층으로 사용되는 CdS 막의 광투과도가 높아야 많은 양의 빛이 손실 없이 투과하여 광흡수층인 CIGS에 도달할 수 있다. 특히, CdS막의 두께가 얇으면 밴드 갭 이상의 에너지를 가지는 파장의 빛도 투과시킬 수 있어 태양전지의 효율의 증가을 얻을 수가 있다. 그러나 CdS 막의 두께가 얇을 경우, pinhole이 생성되는 등 막의 균질성이 문제가 된다. 본 연구에서는 높은 변환 효율을 갖는 CIGS 박막 태양전지 제작에 적합한 chemical bath depostion(츙)법을 이용하여 CdS 박막을 제조하였다. 또한 반응시간, Cd 및 S source 비와 같은 증착 조건에 따른 박막의 특성을 조사하였다.

  • PDF

The Study on Growth and Properties of CdS Thin Film by Chemical Bath Deposition (용액성장법을 이용한 태양전지용 CdS 박막의 제작 및 특성에 관한 연구)

  • Lee, H.Y.;Lee, J.H.;Park, Y.K.;Kim, J.H.;Yoo, Y.S.;Yang, K.J.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1436-1438
    • /
    • 1997
  • In this paper, CdS thin films, which were widely used window layer of the CdS/CdTe and the CdS/$CuInSe_2$ heterojunction solar cell, were grown by chemical bath deposition, and The properties were investigated in detail. Cadmium acetate and thiourea were used as cadmium and sulfur source, respectively. And Ammonium acetate was used as the buffer solution. Also Ammonia was used for controlling pH concentration. The reaction velocity was increased with increasing reaction temperature and decreasing pH concentration. The crystal structure of CdS films grown with various pH concentration had the hexagonal structure with (002) plane peak. In the range of pH $9{\sim}9.5$, the intensity of the peak was highest, and as increasing pH concentration, decreased the intensity of the peak except pH12.

  • PDF