• 제목/요약/키워드: CdS thin film

검색결과 188건 처리시간 0.032초

Se Incorporation in VTD-SnS by RTA and Its Influence on Performance of Thin Film Solar Cells

  • Yadav, Rahul Kumar;Kim, Yong Tae;Pawar, Pravin S.;Heo, Jaeyeong
    • Current Photovoltaic Research
    • /
    • 제10권2호
    • /
    • pp.33-38
    • /
    • 2022
  • Planner configuration thin film solar cells (TFSCs) with SnS/CdS heterojunction performed a lower short-circuit current (JSC). In this study, we have demonstrated a path to overcome deficiency in JSC by the incorporation of Se in the SnS absorber. We carried out the incorporation of Se in VTD grown SnS absorber by rapid thermal annealing (RTA). The diffusion of Se is mostly governed by RTA temperature (TRTA), also it is observed that film structure changes from cube-like to plate-like structure with TRTA. The maximum JSC of 23.1 mA cm-2 was observed for 400℃ with an open-circuit voltage (VOC) of 0.140 V for the same temperature. The highest performance of 2.21% with JSC of 18.6 mA cm-2, VOC of 0.290 V, and fill factor (FF) of 40.9% is observed for a TRTA of 300℃. In the end, we compare the device performance of Se- incorporated SnS absorber with pristine SnS absorber material, increment in JSC is approximately 80% while a loss in VOC of about 20% has been observed.

Atomic layer epitaxy(ALE) 방법으로 제작된 ZnS:Mn 박막전계발광소자의 전기, 광학적 특성 (Electrical and optical characeristics of ZnS:Mn thin-film electroluminescent(TFEL) devices grown by atomic layer epitaxy)

  • 이순석;윤선진;임성규
    • 전자공학회논문지D
    • /
    • 제35D권2호
    • /
    • pp.52-59
    • /
    • 1998
  • The ZnS:Mn thin film electroluminescent(TFEL) devices fabricated by ALE system were investigated. Yellow-orange light emission was observed when the applied voltage exceeded 134 V and luminance increased sharply as the applied voltage increased. Luminance of 568 Cd/c $m^{2}$ was obtained under 1 KHz sinusoidal voltage wave application at the peak applied voltage of 230 V. The peak wavelength of the emissionwas 577 nm. The C-V, Q-V, $Q_{t}$ - $F_{p}$ , L- $Q_{cond}$, and V- $Q_{pol}$ have been measured under theapplication of the trapezoidal wave with its pulse width varying 0 to 75 .mu.sec. The phoshor and the insulator capacitance of the TFEL device under test were 24.3 nF/c $m^{2}$ and 9 nF/c $m^{2}$, respectively. It was observed that the threshold voltage changed from 137V to 100V as the pulse width varied from 0 to 75 .mu.sec. The L- $Q_{cond}$ characteristics showed that the light emission increased in proportion to the $Q_{cond}$. The luminance increased from 386 Cd/ $m^{2}$ to 607 Cd/ $m^{2}$ when the $Q^{+}$$_{cond}$ increased from 1.3 .mu.C/c $m^{2}$ to 2.3 .mu.C/c $m^{2}$. The V- $Q_{pol}$ characteristics showed that the V was inversely proportional to $Q_{pol}$./. th/ was inversely proportional to $Q_{pol}$./. pol/./.

  • PDF

Study on ZnS Thin Films Prepared by RF Magnetron Sputtering

  • 황동현;안정훈;손영국
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.399-399
    • /
    • 2011
  • We studied the structural and optical characterization of zinc sulfide (ZnS) thin films by RF magnetron sputtering on glass substrates. The substrate temperature was varied in the range of 100$^{\circ}C$ to 400$^{\circ}C$. The XRD analyses indicated that ZnS films had cubic structures with (111) preferential orientation and grain size varied from 20 to 60 nm, increasing with substrate temperatures. The optical properties were carried out by UV-visible spectrophotometer. Transmission measurement showed that the films had more than 70% transmittance in the wavelength larger than 400 nm, and the absorption edge shifted to shorter wavelength with the increase of substrate temperatures.

  • PDF

Synthesis and Characterization of CZTS film deposited by Chemical Bath Deposition method

  • Arepalli, Vinaya Kumar;Kumar, Challa Kiran;Park, Nam-Kyu;Nang, Lam Van;Kim, Eui-Tae
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.99.1-99.1
    • /
    • 2012
  • The thin-film photovoltaic absorbers (CdTe and $Cu(In,Ga)Se_2$) can achieve solar conversion efficiencies of up to 20% and are now commercially available, but the presence of toxic (Cd,Se) and expensive elemental components (In, Te) is a real issue as the demand for photovoltaics rapidly increases. To overcome these limitations, there has been substantial interest in developing viable alternative materials, such as $Cu_2ZnSnS_4$ (CZTS) is an emerging solar absorber that is structurally similar to CIGS, but contains only earth abundant, non-toxic elements and has a near optimal direct band gap energy of 1.4 - 1.6 eV and a large absorption coefficient of ~104 $cm^{-1}$. The CZTS absorber layers are grown and investigated by various fabrication methods, such as thermal evaporation, e-beam evaporation with a post sulfurization, sputtering, non-vacuum sol-gel, pulsed laser, spray-pyrolysis method and electrodeposition technique. In the present work, we report an alternative aqueous chemical approach based on chemical bath deposition (CBD) method for large area deposition of CZTS thin films. Samples produced by our method were analyzed by scanning electron microscopy, X-ray diffraction, transmission electron microscopy, absorbance and photoluminescence. The results show that this inexpensive and relatively benign process produces thin films of CZTS exhibiting uniform composition, kesterite crystal structure, and some factors like triethanolamine, ammonia, temperature which strongly affect on the morphology of CZTS film.

  • PDF

A Multifunctional Material Based on Triphenylamine and a Naphthyl Unit for Organic Light-Emitting Diodes, Organic Solar Cells, and Organic Thin-Film Transistors

  • Kwon, Jongchul;Kim, Myoung Ki;Hong, Jung-Pyo;Lee, Woochul;Lee, Seonghoon;Hong, Jong-In
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권5호
    • /
    • pp.1355-1360
    • /
    • 2013
  • We have developed a new multifunctional material, 4,4',4"-tris(4-naphthalen-2-yl-phenyl)amine (2-TNPA), which can be used as a blue-emitting and hole-transporting material in organic light-emitting diodes (OLEDs), as well as a donor material in organic solar cells (OSCs) and an active material in organic thin-film transistors (OTFTs). The OLED device doped with 3% 2-TNPA shows a maximum current efficiency of 3.0 $cdA^{-1}$ and an external quantum efficiency of 3.0%. 2-TNPA is a more efficient hole-transporting material than 4,4'-bis[N-(naphthyl-N-phenylamino)]biphenyl (NPD). Furthermore, 2-TNPA shows a power-conversion efficiency of 0.39% in OSC and a field-effect mobility of $3.2{\times}10^{-4}cm^2V^{-1}s^{-1}$ in OTFTs.

화학습식공정법을 이용한 용액 농도 및 시간에 따른 ZnS 완충층 특성에 대한 분석 (Properties of the ZnS Thin Film Buffer Layer by Chemical Bath Deposition Process with Different Solution Concentrations and Deposition Time)

  • 손경태;김종완;김민영;신준철;조성희;임동건
    • 한국전기전자재료학회논문지
    • /
    • 제27권5호
    • /
    • pp.269-275
    • /
    • 2014
  • In this study, chemical bath deposition method was used to grow Zinc sulfide(ZnS) thin films from $NH_3/SC(NH_2)_2/ZnSO_4$ solutions at $90^{\circ}C$. ZnS thin films have been prepared onto ITO glass. The concentrations of $ZnSO_4$ and $NH_3$ were varied while the concentration of Thiourea was fixed in 0.52 M. Structural, optical, electrical characteristic of ZnS thin films were measured. The physical and optical properties of different ZnS thin films were influenced severely by the concentration of the two reacting chemicals. The optimal concentration of $ZnSO_4$ and $NH_3$ was 0.085 M and 1.6 M, respectively.

SnS (tin monosulfide) thin films obtained by atomic layer deposition (ALD)

  • Hu, Weiguang;Cho, Young Joon;Chang, Hyo Sik
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.305.2-305.2
    • /
    • 2016
  • Tin monosulfide (SnS) is one promising candidate absorber material which replace the current technology based on cadmium telluride (CdTe) and copper indium gallium sulfide selenide (CIGS) for its suitable optical band gap, high absorption coefficient, earth-abundant, non-toxic and cost-effective. During past years work, thin film solar cells based on SnS films had been improved to 4.36% certified efficiency. In this study, Tin monosul fide was obtained by atomic layer deposition (ALD) using the reaction of Tetrakis (dimethylamino) tin (TDMASn, [(CH3)2N]4Sn) and hydrogen sulfide (H2S) at low temperatures (100 to 200 oC). The direct optical band gap and strong optical absorption of SnS films were observed throughout the Ultraviolet visible spectroscopy (UV VIS), and the properties of SnS films were analyzed by sanning Electron Microscope (SEM) and X-Ray Diffraction (XRD).

  • PDF

An Organic Electrophosphorescent Device Driven by All-Organic Thin-Film Transistor using Polymeric Gate Insulator

  • Pyo, S.W.;Shim, J.H.;Kim, Y.K.
    • Journal of Information Display
    • /
    • 제4권2호
    • /
    • pp.1-6
    • /
    • 2003
  • In this paper, we demonstrate that the organic electrophosphorescent device is driven by the organic thin film transistor with spin-coated photoacryl gate insulator. It was found that electrical output characteristics in our organic thin film transistors using the staggered-inverted top-contact structure showed the non-saturated slope in the saturation region and the sub-threshold nonlinearity in the triode region, where we obtained the maximum power luminance that was about 90 $cd/m^2$. Field effect mobility, threshold voltage, and on-off current ratio in 0.45 ${\mu}m$ thick gate dielectric layer were 0.17 $cm^2/Vs$, -7 V, and $10^6$ , respectively. In order to form polyimide as a gate insulator, vapor deposition polymerization process was also introduced instead of spin-coating process, where polyimide film was co-deposited by high-vacuum thermal evaporation from 4,4'-oxydiphthalic anhydride (ODPA) and 4,4'-oxydianiline (ODA) and cured at 150${\sqsubset}$for 1hr. It was also found that field effect mobility, threshold voltage, on-off current ratio, and sub-threshold slope with 0.45 ${\mu}m$ thick gate dielectric films were 0.134 $cm^2/Vs$, -7 V, and $10^6$ A/A, and 1 V/decade, respectively.

Importance of Green Density of Nanoparticle Precursor Film in Microstructural Development and Photovoltaic Properties of CuInSe2 Thin Films

  • Hwang, Yoonjung;Lim, Ye Seul;Lee, Byung-Seok;Park, Young-Il;Lee, Doh-Kwon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.471.2-471.2
    • /
    • 2014
  • We demonstrate here that an improvement in precursor film density (green density) leads to a great enhancement in the photovoltaic performance of CuInSe2 (CISe) thin film solar cells fabricated with Cu-In nanoparticle precursor films via chemical solution deposition. A cold-isostatic pressing (CIP) technique was applied to uniformly compress the precursor film over the entire surface (measuring 3~4 cm2) and was found to increase its relative density (particle packing density) by ca. 20%, which resulted in an appreciable improvement in the microstructural features of the sintered CISe film in terms of lower porosity, reduced grain boundaries, and a more uniform surface morphology. The low-bandgap (Eg=1.0 eV) CISe PV devices with the CIP-treated film exhibited greatly enhanced open-circuit voltage (VOC, from 0.265 V to 0.413 V) and fill factor (FF, from 0.34 to 0.55), as compared to the control devices. As a consequence, an almost 3-fold increase in the average power conversion efficiency, 3.0 to 8.2% (with the highest value of 9.02%), was realized without an anti-reflection coating. A diode analysis revealed that the enhanced VOC and FF were essentially attributed to the reduced reverse saturation current density (j0) and diode ideality factor (n). This is associated with the suppressed recombination, likely due to the reduction in recombination sites such as grain/air surfaces (pores), inter-granular interfaces, and defective CISe/CdS junctions in the CIP-treated device. From the temperature dependences of VOC, it was confirmed that the CIP-treated devices suffer less from interface recombination.

  • PDF

백색 전계발광소자의 제작과 그 특성 (Fabrication and Characteristics of a White Emission Electroluminicent Device)

  • 김우현;최시영
    • 센서학회지
    • /
    • 제10권6호
    • /
    • pp.295-303
    • /
    • 2001
  • 형광체로서 ZnS를 사용하고 BST 강유전체 박막을 절연체로 사용한 전계발광소자를 제작하고 그 특성을 조사하였다. 형광체로는 청색 및 녹색발광을 위해 각각 $ZnS:AgF_3$와 ZnS:$TbF_3$를 사용하였으며 적색을 위해 ZnS:Mn과 $ZnS:SmF_3$를 사용했다. 이들의 형광체가 증착 도중에 분해되는 것을 막기 위해 석영관에 그들을 각각 봉입해서 열처리하여 결정화시킨 후에 진공증착원으로 사용하였다. 한편 절연층으로 사용한 BST박막은 $Ba_{0.5}Sr_{0.5}TiO_3$세라믹스 타겟을 사용하여 마그네트론 스퍼터링 방법으로 제조하였다. 이때 기판온도, 분위기압 및 작동기체인 $Ar:O_2$의 비가 각각 $400^{\circ}C$, 30 mTorr 및 9:1이였다. 각 형광체의 두께는 150 nm씩 합계 600 nm였고, 절연층은 상부가 400 nm 및 하두가 200 nm이었다. 이와 같이 만든 박막 전계발광소자의 발광 문턱전압은 $75\;V_{rms}$이고, 최고 휘도는 $100\;V_{rms}$에서 $3200\;cd/m^2$이었다. 그리고 절연층의 유전상수는 1 kHz에서 254이다.

  • PDF