• Title/Summary/Keyword: CdS films

Search Result 250, Processing Time 0.029 seconds

Photoluminescience Properties and Growth of $CuAlSe_2$ Single Crystal Thin Film by Hot Wall Epitaxy (Hot Wall Epitaxy(HWE)법에 의한 $CuAlSe_2$ 단결정 박막 성장과 광발광 특성)

  • Lee, S.Y.;Hong, K.J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.386-391
    • /
    • 2003
  • Sing1e crystal $CuAlSe_2$ layers were grown on thoroughly etched semi-insulating GaAs(100) substrate at $410^{\circ}C$ with hot wall epitaxy (HWE) system by evaporating $CuAlSe_2$source at $680^{\circ}C$. The crystalline structure of the single crystal thin films was investigated by the photoluminescence(PL) and double crystal X-ray diffraction (DCXD). The carrier density and mobility of single crystal $CuAlSe_2$ thin films measured with Hall effect by van der Pauw method are $9.24{\times}10^{16}\;cm^{-3}$ and $295\;cm^2/V{\cdot}\;s$ at 293 K, respectively. The temperature dependence of the energy band gap of the $CuAlSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)\;=\;2.8382\;eV\;-\;(8.86\;{\times}\;10^{-4}\;eV/K)T^2/(T\;+\;155K)$. After the as-grown single crystal $CuAlSe_2$ thin films were annealed in Cu-, Se-, and Al-atmospheres, the origin of point defects of single crystal $CuAlSe_2$ thin films has been investigated by PL at 10 K. The native defects of $V_{Cd}$, $V_{Se}$, $Cd_{int}$, and $Se_{int}$ obtained by PL measurements were classified as donors or accepters. And we concluded that the heat-treatment in the Cu-atmosphere converted single crystal $CuAlSe_2$ thin films to an optical n-type. Also, we confirmed that Al in $CuAlSe_2/GaAs$ did not form the native defects because Al in single crystal $CuAlSe_2$ thin films existed in the form of stable bonds.

  • PDF

Photocurrent study on the splitting of the valence band and growth of $CdGa_2Se_4$ single crystal thin film by hot wall epitaxy (Hot Wall epitaxy(HWE)법에 의한 $CdGa_2Se_4$ 단결정 박막의 성장과 가전자대 갈라짐에 대한 광전류 연구)

  • Park, Chang-Sun;Hong, Kwang-Joon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.5
    • /
    • pp.179-186
    • /
    • 2007
  • Single crystal $CdGa_2Se_4$ layers were grown on a thoroughly etched semi-insulating GaAs(100) substrate at $420^{\circ}C$ with the hot wall epitaxy(HWE) system by evaporating the polycrystal source of $CdGa_2Se_4$ at $630^{\circ}C$. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction(DCXD). The carrier density and mobility of single crystal $CdGa_2Se_4$ thin films measured with Hall effect by van der Pauw method are $8.27{\times}10^{17}cm^{-3},\;345cm^2/V{\cdot}s$ at 293 K, respectively. The photocurrent and the absorption spectra of $CdGa_2Se_4/SI$(Semi-Insulated) GaAs(100) are measured ranging from 293 K to 10 K. The temperature dependence of the energy band gap of the $CdGa_2Se_4$ obtained from the absorption spectra was well described by the Varshni's relation $E_g(T)=2.6400eV-(7.721{\times}10^{-4}eV/K)T^2/(T+399K)$. Using the photocurrent spectra and the Hopfield quasicubic model, the crystal field energy(${\Delta}cr$) and the spin-orbit splitting energy(${\Delta}so$) far the valence band of the $CdGa_2Se_4$ have been estimated to be 106.5 meV and 418.9 meV at 10 K, respectively. The three photocurrent peaks observed at 10 K are ascribed to the $A_{1^-},\;B_{1^-},\;and\;C_{11}-exciton$ peaks.

Photoelectrochemical Cell Study on Closely Arranged Vertical Nanorod Bundles of CdSe and Zn doped CdSe Films

  • Soundararajan, D.;Yoon, J.K.;Kwon, J.S.;Kim, Y.I.;Kim, S.H.;Park, J.H.;Kim, Y.J.;Park, D.Y.;Kim, B.C.;Wallac, G.G.;Ko, J.M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.8
    • /
    • pp.2185-2189
    • /
    • 2010
  • Closely arranged CdSe and Zn doped CdSe vertical nanorod bundles were grown directly on FTO coated glass by using electrodeposition method. Structural analysis by XRD showed the hexagonal phase without any precipitates related to Zn. FE-SEM image showed end capped vertically aligned nanorods arranged closely. From the UV-vis transmittance spectra, band gap energy was found to vary between 1.94 and 1.98 eV due to the incorporation of Zn. Solar cell parameters were obtained by assembling photoelectrochemical cells using CdSe and CdSe:Zn photoanodes, Pt cathode and polysulfide (1M $Na_2S$ + 1M S + 1M NaOH) electrolyte. The efficiency was found to increase from 0.16 to 0.22 upon Zn doping. Electrochemical impedance spectra (EIS) indicate that the charge-transfer resistance on the FTO/CdSe/polysulfide interface was greater than on FTO/CdSe:Zn/polysulfide. Cyclic voltammetry results also indicate that the FTO/CdSe:Zn/polysulfide showed higher activity towards polysulfide redox reaction than that of FTO/CdSe/polysulfide.

Annealing Effect on the Structural and Optical Properties of In2S3 Thin Films

  • Hwang, Dong-Hyeon;An, Jeong-Hun;Son, Yeong-Guk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.589-589
    • /
    • 2012
  • Indium sulfide thin films have been grown onto glass substrates using radio frequency magnetron sputtering at room temperature. The as-deposited film were annealed in nitrogen atmosphere at different temperatures of 100, 200, 300, 400 and $500^{\circ}C$ with an 1 h annealing time. The effect of annealing temperature on composition, structure, morphology and optical properties of the as-grown In2S3 films has been studied. The XRD results indicate that the as-deposited films are composed by a mixture of both cubic ${\alpha}$ and ${\beta}$ crystalline phases, with some fraction of tetragonal phase. The thermal annealing on the films produces the conversion of the cubic crystalline phases to the tetragonal ${\beta}$ one and a crystalline reorientation of the latter phase. The surface morphological analysis reveals that the films grown at $300^{\circ}C$ have an average grain size of ~ 58 nm. These films show a S/In ratio of 0.99. The optical band gap is found to be direct and the films grown at $300^{\circ}C$ shows a higher optical transmittance of 80% and an energy band gap of 2.52 eV.

  • PDF

Study on ZnS Thin Films Prepared by RF Magnetron Sputtering

  • Hwang, Dong-Hyeon;An, Jeong-Hun;Son, Yeong-Guk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.399-399
    • /
    • 2011
  • We studied the structural and optical characterization of zinc sulfide (ZnS) thin films by RF magnetron sputtering on glass substrates. The substrate temperature was varied in the range of 100$^{\circ}C$ to 400$^{\circ}C$. The XRD analyses indicated that ZnS films had cubic structures with (111) preferential orientation and grain size varied from 20 to 60 nm, increasing with substrate temperatures. The optical properties were carried out by UV-visible spectrophotometer. Transmission measurement showed that the films had more than 70% transmittance in the wavelength larger than 400 nm, and the absorption edge shifted to shorter wavelength with the increase of substrate temperatures.

  • PDF

Effect of CdTe Deposition Conditions by Close spaced Sublimation on Photovoltaic Properties of CdS/CdTe Solar Cells (CdTe박막의 근접승화 제조조건에 따른 CdS/CdTe 태양전지의 광전압 특성)

  • Han, Byung-Wook;Ahn, Jin-Hyung;Ahn, Byung-Tae
    • Korean Journal of Materials Research
    • /
    • v.8 no.6
    • /
    • pp.493-498
    • /
    • 1998
  • CdTe films were deposited by close spaced sublimation with various substrate temperatures, cell areas, and thicknesses of CdTe and ITO layers and their effects on the CdS/CdTe solar cells were investigated. The resistivity of CdTe layers employed in this study was 3$\times$ $10^{4}$$\Omega$cm For constant substrate temperature the optimum substrate ternperature for CdTe deposition was $600^{\circ}C$. To obtain larger grain size and more compact microstructure, CdTe film was initially deposited at 62$0^{\circ}C$, and then deposited at 54$0^{\circ}C$. The CdTe film was annealed at 62$0^{\circ}C$ and $600^{\circ}C$ sequentially to maintain the CdTe film quality. The photovoitaic cell efficiency improved by the "two-wave" process. For constant substrate temperature, the optimum thickness for CdTe was 5-6$\mu m$. Above 6$\mu m$ CdTe thickness, the bulk resistance of CdTe film degraded the cell performance. As the cell area increased the $V_{oc}$ remained almost constant, while $J_{sc}$ and FF strongly decreased because of the increase of lateral resistance of the ITO layer. The optimum thickness of the ITa layer in this study was 300~450nm. In this experiment we obtained the efficiency of 9.4% in the O.5cm' cells. The series resistance of the cell should be further reduced to increase the fill factor and improve the efficiency.

  • PDF

The Influence of Substrate Temperature on the Structural and Optical Properties of ZnS Thin Films (기판온도가 ZnS 박막의 구조 및 광학적 특성에 미치는 영향)

  • Hwang, Dong-Hyun;Ahn, Jung-Hoon;Son, Young-Guk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.9
    • /
    • pp.760-765
    • /
    • 2011
  • Znic sulfide (ZnS) thin films were deposited on glass substrates by radio frequency magnetron sputtering. The substrate temperature varied from room temperature (RT) to $500^{\circ}C$. The structural and optical properties of ZnS films were studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive analysis of X-ray (EDAX) and UV-visible transmission spectra. The XRD analyses reveal that ZnS films have cubic structures with (111) preferential orientation, whereas the diffraction patterns sharpen with the increase in substrate temperatures. The FESEM images indicate that ZnS films deposited at $400^{\circ}C$ have nano-sized grains with a grain size of ~ 67 nm. Then films exhibit relatively high transmittance of 80% in the visible region, with an energy band gap of 3.71 eV. One obvious result is that the energy band gap of the film increases with increasing the substrate temperatures.

LCD BLU Optical Film Market and Technology Trends

  • Huh, Jong-Wook
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.151-151
    • /
    • 2009
  • In this presentation, CD BLU optical film market and technology trends are introduced at first. Then hghly precise, cost-advantaged MNTECH's specialized Soft Mold replication Technology and its optic films are contained.

  • PDF

High Performance of SWIR HgCdTe Photovoltaic Detector Passivated by ZnS

  • Lanh, Ngoc-Tu;An, Se-Young;Suh, Sang-Hee;Kim, Jin-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.128-132
    • /
    • 2004
  • Short wave infrared (SWIR) photovoltaic devices have been fabricated from metal organic vapour phase epitaxy (MOVPE) grown n- on p- HgCdTe films on GaAs substrates. The MOVPE grown films were processed into mesa type discrete devices with wet chemical etching employed for meas delineation and ZnS surface passivatlon. ZnS was thermally evaporated from effusion cell in an ultra high vacuum (UHV) chamber. The main features of the ZnS deposited from effusion cell in UHV chamber are low fixed surface charge density, and small hysteresis. It was found that a negative flat band voltage with -0.6 V has been obtained for Metal Insulator Semiconductor (MIS) capacitor which was evaporated at $910^{\circ}C$ for 90 min. Current-Voltage (I-V) and temperature dependence of the I-V characteristics were measured in the temperature range 80 - 300 K. The Zero bias dynamic resistance-area product ($R_{0}A$) was about $7500{\Omega}-cm^{2}$ at room temperature. The physical mechanisms that dominate dark current properties in the HgCdTe photodiodes are examined by the dependence of the $R_{0}A$ product upon reciprocal temperature. From theoretical considerations and known current expressions for thermal and tunnelling process, the device is shown to be diffusion limited up to 180 K and g-r limited at temperature below this.

Trapping centers due to native defects in the $CdIn_2S_4$ films grown by hot wall epitaxy

  • Hong, Myung-Seuk;Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.167-168
    • /
    • 2007
  • $CdIn_2S_4$ (110) films were grown on semi-insulating GaAs (100) by a hot wall epitaxy method. Using photocurrent (PC) measurement, the PC spectra in the temperature range of 30 and 10 K appeared as three peaks in the short wavelength region. It was found that three peaks, A-, B-, and C-excitons, correspond to the intrinsic transition from the valence band states of ${\Gamma}_4(z),\;{\Gamma}_5(x),\;and\;{\Gamma}_5(y)$ to the exciton below the conduction band state of ${\Gamma}_1(s)$, respectively. The 0.122 eV crystal field splitting and the 0.017 eV spin orbit splitting were obtained. Thus, the temperature dependence of the optical band gap obtained from the PC measurement was well described by $E_g$(T)=2.7116eV - $(7.65{\times}10^{-4}\;eV/K)T^2$/(425+T). But, the behavior of the PC was different from that generally observed in other semiconductors. The PC intensities decreased with decreasing temperature. This phenomenon had ever been reported at a PC experiment on the bulk crystals grown by the Bridgman method. From the relation of log $J_{ph}$ vs 1/T, where $J_{ph}$ is the PC density, two dominant levels were observed, one at high temperatures and the other at low temperatures. Consequently, the trapping centers due to native defects in the $CdIn_2S_4$ film were suggested to be the causes of the decrease in the PC signal with decreasing temperature.

  • PDF