• Title/Summary/Keyword: Cd & Pb

Search Result 1,996, Processing Time 0.037 seconds

Characteristics of Metallic Elements Concentration of Fine Particles(PM10, PM2.5) at Busan in 2004 (2004년 부산지역 미세먼지(PM10, PM2.5) 중의 금속 농도 특성)

  • Jeon Byung-Il;Hwang Yong-Sik;Lee Hyeok-Woo;Yang Ah-Reum;Kim Hyun-Jung;Seol Jae-Hwan;Kang Young-Jin;Kim Taek-Hoon;Jang Hyun-Seok
    • Journal of the Korean earth science society
    • /
    • v.26 no.6
    • /
    • pp.573-583
    • /
    • 2005
  • [ $PM_{10}\;and\;PM_{2.5}$ ] aerosols were collected at Busan from March, 2004 to December, 2004, and the concentrations of some metal elements were chemically analyzed to study their characteristics. The mean concentration of $PM_{10}$ was $58.2{\mu}g/m^3$ with a range of 8.3 to $161.1{\mu}g/m^3$. The mean concentration of $PM_{2.5}$ was $29.3{\mu}g/m^3$ with a range of 2.8 to $65.3\mu}g/m^3$. The mean mass concentrations of Asian dust and non Asian dust in $PM_{10}$ were $121.5\mu}g/m^3$ and $56.0{\mu}g/,^3$ respectively. The mean values of crustal enrichment factors for six elements (Cd, Cr, Cu, Ni, Pb and Zn) were all higher than 10, possibly suggesting the influence of anthropogenic sources. The crustal enrichment factors of some heavy metal elements in non-Asian dust (NAD) were higher than those in Asian dust (AD), possibly due to anthropogenic emissions transported from industries around this area by westerly wind. The soil contribution ratios for $PM_{10}$ and $PM_{2.5}$ were $15.2\%$ and $17.5\%$ on the whole. and those of AD/NAD for $PM_{10}$ and $PM_{2.5}$ were 1.9 and 2.1, respectively.

CONCENTRATIONS OF MERCURY, CADMIUM, LEAD AND CUPPER IN THE SURROUNDING SEAWATER AND IN SEAWEEDS, UNDARIA PINNNATIFIDA AND SARGASSUM FULVELLUM, FROM SUYEONG BAY IN BUSAN (수영만 양식 미역, 모자반 및 환경해수의 수은, 카드뮴, 납, 구리의 농도에 대하여)

  • KIM Chang Yang;WON Jong Hun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.7 no.3
    • /
    • pp.169-178
    • /
    • 1974
  • Concentrations of mercury, cadmium, lead and copper are determined in the surrounding seawater and in seaweeds, Undarta pinnatifida and Sargassun fulvellum, from Suyeong Bay in Busan in the spring tide and neap tide from January to April 1974. The range and mean of the heavy metal concentrations in the surrounding seawater are as follows : mercury 0.00-0.39 ppb, 0. 16ppb; cadmium 0.00-0.46 ppb, 0.18 ppb, lead 0.00-0.94 ppb, 0.26 ppb : copper 0.00-0.86 ppb, 0.25 ppb respectively, and the concentrations varied slightly according to the tide. The mean values of concentration rate of Hg, Cd, Pb and Cu in air dry base were $0.42\times10^3(0.13\times10^3\~1.0\times10^3)$, $2.1\times10^3(0.8\times10^3\~4.9\times10^3)$, $8.9\times10^3(3.1\times10^3\~19\times10^3)$ and $15\times10^3(6.0\times10^3\~28\times10^3)$ in the Undaria pinnatifida, and $0.25\times10^3($0.06\times10^3\~0.56\times10^3)$, $1.0\times10^3(0.61\times10^3\~1.7\times10^3)$, $5.4\times10^3(3.1\times10^3\~8.5\times10^3)$ and $22.8\times10^3(14.4\times10^3\~52.4\times10^3)$ in the Sargassun fulvellum. The concentration rate of Hg, Cd and Pb of the Undaria pinnatifida was almost twice as much as that of the Sargassun fulvellum but the concentration rate of copper of the former was slightly smaller than of the latter.

  • PDF

Synthesis of Na-A Type Zeolite and Its Ability to Adsorb Heavy Metals (Na-A형 제올라이트의 합성 및 중금속에 대한 흡착능)

  • Chae, Soo-Chun;Jang, Young-Nam;Bae, In-Kook;Lee, Sung-Ki;Ryou, Kyung-Won
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.37-44
    • /
    • 2008
  • This study was performed to synthesize Na-A type zeolite with melting slag from the Mapo incineration site and recycle the zeolite as an environmental remediation agent. The melting slag used had a favorable composition containing 26.6% $SiO_2$, 10.9% $Al_2O_3$ and 2.7% $Na_2O$ for zeolite synthesis although there were high contents of iron oxides, including 19.6% $Fe_2O_3$ and 18.9% FeO, which had been used as a flux for the melting. It was confirmed that the Na-A type zeolite could be successfully synthesized at $80^{\circ}C$ and $SiO_2/Al_2O_3\;=\;0.80{\sim}1.96$. The cation exchange capacities (CEC) of the zeolites was determined to be about 220 cmol/kg leveled off at the synthetic time more than 10hrs. The adsorption capacities of zeolite to heavy metals (Cd, Cu, Mn and Pb) were high except for As arid Cr. It was also confirmed through the Eh and pH analysis that As and Cr existed in the forms of $HAsO_4^{2-}$ and $CrO_4^{2-}$. The low absorption rates of zeolite for As and Cr are attributed to the fact that the pore size ($4\;{\AA}$) of Na-A type is smaller than those of $HAsO_4^{2-}$ and $CrO_4^{2-}$ ions ($4\;{\AA}$ ionic radii and $8\;{\AA}$ diameter).

Studies on Solvent Extraction and Analytical Application of Metal-dithizone Complexes(I). Separation and Determination of Trace Heavy Metals in Urine (Dithizone 금속착물의 용매추출 및 분석적 응용(제1보). 뇨중 흔적량 중금속 원소의 분리 정량)

  • Jeon, Moon-Kyo;Choi, Jong-Moon;Kim, Young-Sang
    • Analytical Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.336-344
    • /
    • 1996
  • The extraction of trace cobalt, copper, nickel, cadmium, lead and zinc in urine samples of organic and alkali metal matrix into chloroform by the complex with a dithizone was studied for graphite furnace AAS determination. Various experimental conditions such as the pretreatment of urine, the pH of sample solution, and dithizone concentration in a solvent were optimized for the effective extraction, and some essential conditions were also studied for the back-extraction and digestion as well. All organic materials in 100 mL urine were destructed by the digestion with conc. $HNO_3$ 30 mL and 30% $H_2O_2$ 50 mL. Here, $H_2O_2$ was added dropwise with each 5.0 mL, serially. Analytes were extracted into 15.0 mL chloroform of 0.1% dithizone from the digested urine at pH 8.0 by shaking for 90 minutes. The pH was adjusted with a commercial buffer solution. Among analytes, cadmium, lead and zinc were back-extracted to 10.00 mL of 0.2 M $HNO_3$ from the solvent for the determination, and after the organic solvent was evaporated, others were dissolved with $HNO_3-H_2O_2$ and diluted to 10.00 mL with a deionized water. Synthetic digested urines were used to obtain optimum conditions and to plot calibration-eurves. Average recoveries of 77 to 109% for each element were obtained in sample solutions in which given amounts of analytes were added, and detection limits were Cd 0.09, Pb 0.59, Zn 0.18, Co 0.24, Cu 1.3 and Ni 1.7 ng/mL, respectively. It was concluded that this method could be applied for the determination of heavy elements in urine samples without any interferences of organic materials and major alkaline elements.

  • PDF

Physicochemical Characteristics of Fermented Pig Manure Compost and Cow Manure Compost by Pelletizing (펠렛 가공처리에 따른 돈분 발효퇴비와 우분 발효퇴비의 물리화학적 특성)

  • Jeong, Kwang Hwa;Park, Chi Ho;Choi, Dong Yun;Kwak, Jung Hoon;Yang, Chang Bum;Kang, Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.13 no.4
    • /
    • pp.118-127
    • /
    • 2005
  • The best way to treat livestock manure is a recycling the manure to arable land as an organic fertilizer. In this study, fermented cow manure compost and pig manure compost were used as a raw materials for pelletizing. The changes of physicochemical properties of each composts and pellets were investigated. The aim of this research was to improve availability of livestock manure compost. In pelletizing process of fermented livestock manure compost, the optimal water content to make pellet was around 40%. When clay was mixed by volume more than 15% as a bonding agent, the condition of pelletizing process was beginning to improve. On a dry matter basis, the contents of N, P and K of fermented pig manure compost were 2.05%, 1.89% and 1.31%, respectively. After pelletizing, the contents of compost pelleted with the pig manure compost were 1.96% 1.73% and 0.89%, respectively. The same parameters of cow manure compost were 2.52%, 1.01% and 2.98%, respectively. After processing, the contents of compost pelleted with the cow manure compost were 2.45%, 1.10% and 2.93%, respectively. After pelletizing, there were little change in the content of heavy metals such as Pb, Cd, As and Hg. When pelleted compost dried naturally was submerged in water, it was completely dissolved in 30 minutes. On the other hand, Pelleted compost dried with the mechanical convection oven set $70^{\circ}C$ for 24 hours was completely dissolved in 960 minutes. The volume and weight of pelleted compost were decreased with time. After 30 days of storing, the weight of pelleted compost was decreased by 15% compared with its original weight. The volume of it was decreased by 17~25% in the same time.

  • PDF

An Investigation on the Environmental Factors of Certified Organic and Non-pesticide Paddy Soils Cultivating Rice at Goseong-Gun (고성지역 유기농산물과 무농약농산물인증 논토양의 환경 조사)

  • Joo, Heui Sig;Cho, Young Son;Chun, Hyun Sik
    • Journal of Life Science
    • /
    • v.24 no.4
    • /
    • pp.403-410
    • /
    • 2014
  • This study was conducted in organic certification soil for the comparison of heavy metals, nutrients, and irrigated water standards to certify a farm. It was carried out in 811 paddy fields of organic rice (Oryza sativa L.) cultivated at Goseong-Gun. The amounts of 8 heavy metals, Cd, Cu, As, Hg, Pb, $Cr^{6+}$, Zn, and Ni were found to be 0.05, 14.5, 1.08, 0.92, 10.7, 1.34, 35.9, and 22.2 mg $kg^{-1}$ in regular sequence in the organic paddy soil, and they were 0.32, 13.6, 1.01, 0.03, 10.4, 0.91, 42.4 and 22.5 mg $kg^{-1}$ in the non-pesticide paddy soil. In comparing organic and non-pesticide paddy soil with respect to the chemical characteristics of the soil, the average pH and the amount of organic matter, available phosphate and available silicate were 5.88 and 27.6 g $kg^{-1}$, 134.5 mg $kg^{-1}$, and 165.3 mg $kg^{-1}$, while they were 5.78 and 32.1 g $kg^{-1}$, 107.7 mg $kg^{-1}$, and 175.2 mg $kg^{-1}$, respectively. The amount of exchangeable cation $K^+$, $Ca^{2+}$, and $Mn^{2+}$ were 0.25, 5.20, and 1.04 cmol+ $kg^{-1}$ in organic paddy soil, while they were 0.38, 5.13, and 1.19 cmol+ $kg^{-1}$ in non-pesticide paddy soil. The pH, DO, BOD, COD and SS conditions of the irrigated water used in the organic paddy soil were found to be 7.23, 8.40, 2.80, 1.86, and 2.58 mg $l^{-1}$ and the condition of irrigated water used in the non-pesticide paddy soil were found to be 7.65, 9.16, 2.25, 4.11, and 4.00 mg $l^{-1}$, respectively. Based on these findings, we suggest that environmentally-friendly certificates in Korea have to unify organic and non-pesticide agro-products in an organic standard in food policy and control because there is no difference between soil and irrigated water standards in the two certifications.

Safety Assessment of Oriental Medicines and Their Preparations (한약 및 한약제제의 안전성 평가)

  • Jeong, Il-Hyung;Kim, Jong-Hwa;Jeon, Jong-Sup;Cho, Sang-Hun;Park, Shin-Hee;Jo, Hyun-Ye;Kim, Young-Sug
    • Journal of Food Hygiene and Safety
    • /
    • v.25 no.3
    • /
    • pp.232-237
    • /
    • 2010
  • This study was carried out to evaluate the safety of circulated oriental medicines and their related preparations in Gyeonggi-do. Total 366 samples (165 species) were analyzed about heavy metals, residual contents of sulfur dioxide ($SO_2$), and 68 samples were analyzed about preservatives. 17 samples (13 species, 4.6%) were exceeded the legal limit of heavy metal. The concentrations over the legal limit for Pb, Cd, As and Hg were 6.1~19.2 mg/kg, 0.4~0.7 mg/kg, 6.9 mg/kg and 0.7 mg/kg, respectively. In particular, the exceeding ratio (5.9%) of the legal limit of heavy metals in foreign products was 3.3 times more than domestic products (1.8%). 13 samples (10 species, 3.6%) exceeded the limit of residual sulfur dioxide and the concentration ranges were 105 to 428 mg/kg in domestic products, on the other hand foreign products were from 114 to 2,468 mg/kg. The mean concentration over the limit of residual sulfur dioxide of foreign products (804 mg/kg) was 2.4 times more than domestic products (338 mg/kg). In studying of the preservatives in oriental preparation, the contents of dehydroacetic acid (48.9~64.1%) in 3 samples of labeled solutions were under the labeled preservative contents and the contents of benzoic acid (139.9%) in 1 sample of labeled pill product was exceeded the labeled preservative contents. The numbers of the detected preservatives in unlabeled solutions, pills and granules were 4, 11 and 7, respectively.

Studies on the Selective Separation and Preconcentration of Cr(VI) Ion by XAD-16-Chromotropic Acid Chelating Resin (XAD-16-Chromotropic Acid 킬레이트 수지에 의한 몇 가지 금속이온의 선택적 분리 및 농축에 관한 연구)

  • Lee, Won;Lee, Chang-Youl;Kim, Mi-Kyoung;Kim, In-Whan
    • Analytical Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.199-210
    • /
    • 2004
  • A new polystyrene-divinylbenzene chelating resin containing 4,5-dihydroxy-naphthalene-2,7-disulfonic acid (chromotropic acid : CTA) as functional group has been synthesized and characterized. The sorption and desorption properties of this chelating resin for Cr(III) ion and Cr(VI) ion including nine metal bloodstain. As a results, FOB test kit could be effectively applied to identification of human blood at chelating resin was stable in acidic and alkaline solution. The Cr(VI) ion is selectively separated from Cr (III) ion at pH 2 and the maximum sorption capacity of Cr(VI) ion is 1.2 mmol/g. In the presence of anions such as $F^-$, $SO{_4}^{2-}$, $CN^-$, $CH_3COO^-$, $NO{_3}^-$, the sorption of Cr(VI) ion was reduced but anions such as $PO{_4}^{3-}$ and $Cl^-$ revealed no interference effect. The elution order of metal ions obtained from breakthrough capacity and overall capacity at pH 2 was Cr(VI)>Sn(II)>Fe(III)>Cu(II)>Cd(II)${\simeq}Pb(II){\simeq}Cr(III){\simeq}Mn(II){\simeq}Ni(II){\simeq}Al(III)$. Desorption characteristics for Cr(VI) ion was investigated with desorption agents such as $HNO_3$, HCl, and $H_2SO_4$. It was found that the ion showed high desorption efficiency with 3 M HCl. As the result, the chelating resin, XAD-16-CTA was successfully applied to separation and preconcentration of Cr (VI) ion from several metal ions in metal finishing works.

Assessment of Adsorption Capacity of Mushroom Compost in AMD Treatment Systems (광산배수 자연정화시설 내 버섯퇴비의 중금속 흡착능력 평가)

  • Yong, Bo-Young;Cho, Dong-Wan;Jeong, Jin-Woong;Lim, Gil-Jae;Ji, Sang-Woo;Ahn, Joo-Sung;Song, Ho-Cheol
    • Economic and Environmental Geology
    • /
    • v.43 no.1
    • /
    • pp.13-20
    • /
    • 2010
  • Acid mine drainage (AMD) from abandoned mine sites typically has low pH and contains high level of various heavy metals, aggravating ground- and surface water qualities and neighboring environments. This study investigated removal of heavy metals in a biological treatment system, mainly focusing on the removal by adsorption on a substrate material. Bench-scale batch experiments were performed with a mushroom compost to evaluate the adsorption characteristics of heavy metals leached out from a mine tailing sample and the role of SRB in the overall removal process. In addition, adsorption experiments were perform using an artificial AMD sample containing $Cd^{2+}$, $Cu^{2+}$, $Pb^{2+}$ and $Zn^{2+}$ to assess adsorption capacity of the mushroom compost. The results indicated Mn leached out from mine tailing was not subject to microbial stabilization or adsorption onto mushroom compost while microbially mediated stabilization played an important role in the removal of Zn. Fe leaching significantly increased in the presence of microbes as compared to autoclaved samples, and this was attributed to dissolution of Fe minerals in the mine tailing in a response to the depletion of $Fe^{3+}$ by iron reduction bacteria. Measurement of oxidation reduction potential (ORP) and pH indicated the reactive mixture maintained reducing condition and moderate pH during the reaction. The results of the adsorption experiments involving artificial AMD sample indicated adsorption removal efficiency was greater than 90% at pH 6 condition, but it decreased at pH 3 condition.

Composting of Compostable Wet Household Wastes Using Waste Newspapers as Humidity Amendment (수분개선제로 폐신문지를 이용한 가정쓰레기의 퇴비화)

  • Yun, Eun-Jin;Park, Ju-Won;Seo, Jeoung-Yoon
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.1
    • /
    • pp.32-37
    • /
    • 2000
  • Because the household garbage had high water contents, it is difficult to compost it without an additive. Therefore, this study was performed to investigate possibility of using the waste newspapers as a humidity conditioner for the household garbage composting. The maximum temperature was $66.0^{\circ}C$ in spring, $69.2^{\circ}C$ in summer, $60.9^{\circ}C$ in fall and $56.0^{\circ}C$ in winter for composting periods. The seasonal pH value reached around 8.5 after 1 week and then repeated fluctuation at the narrow range in spring and fall, while it was stabilized at the range of $8{\sim}9$ after increasing to 8.5 after 1 week in winter. The water content was reduced little in winter, while decreased significantly in the other seasons. The water content after 8 weeks was 22.2% in spring, 47.6% in summer, 25.5% in fall and 72.5% in winter. The mass was reduced rapidly during the first week of each season, but it did not show much decrease. The volume reduced after 8 weeks to 59%, 32%, 27%, and 34% in spring, summer, fall and winter respectively. Organic matter content decreased over the four seasons. Nitrogen contents were in the range of 0.7% to 2.2% during the four seasons. The contents of inorganic compounds based on dry matyter were in the range of $0.94{\sim}2.59%\;P_2O_5$, $1.23{\sim}1.87%\;CaO$, $0.37{\sim}0.46%\;MgO$, $0.55{\sim}1.98%\;K_2O$. Concentration of heavy metals(Hg, Cd, Pb, Cu, Cr, Zn, As) based on dry matter were less than the limiting value of the by-product compost.

  • PDF