• 제목/요약/키워드: Cavity models

검색결과 163건 처리시간 0.021초

Experimental and numerical analysis of RC structure with two leaf cavity wall subjected to shake table

  • Onat, Onur;Lourenco, Paulo B.;Kocak, Ali
    • Structural Engineering and Mechanics
    • /
    • 제55권5호
    • /
    • pp.1037-1053
    • /
    • 2015
  • This paper presents finite element (FE) based pushover analysis of a reinforced concrete structure with a two-leaf cavity wall (TLCW) to estimate the performance level of this structure. In addition to this, an unreinforced masonry (URM) model was selected for comparison. Simulations and analyses of these structures were performed using the DIANA FE program. The mentioned structures were selected as two storeys and two bays. The dimensions of the structures were scaled 1:1.5 according to the Cauchy Froude similitude law. A shake table experiment was implemented on the reinforced concrete structure with the two-leaf cavity wall (TLCW) at the National Civil Engineering Laboratory (LNEC) in Lisbon, Portugal. The model that simulates URM was not experimentally studied. This structure was modelled in the same manner as the TLCW. The purpose of this virtual model is to compare the respective performances. Two nonlinear analyses were performed and compared with the experimental test results. These analyses were carried out in two phases. The research addresses first the analysis of a structure with only reinforced concrete elements, and secondly the analysis of the same structure with reinforced concrete elements and infill walls. Both researches consider static loading and pushover analysis. The experimental pushover curve was plotted by the envelope of the experimental curve obtained on the basis of the shake table records. Crack patterns, failure modes and performance curves were plotted for both models. Finally, results were evaluated on the basis of the current regulation ASCE/SEI 41-06.

Optimizing shallow foundation design: A machine learning approach for bearing capacity estimation over cavities

  • Kumar Shubham;Subhadeep Metya;Abdhesh Kumar Sinha
    • Geomechanics and Engineering
    • /
    • 제37권6호
    • /
    • pp.629-641
    • /
    • 2024
  • The presence of excavations or cavities beneath the foundations of a building can have a significant impact on their stability and cause extensive damage. Traditional methods for calculating the bearing capacity and subsidence of foundations over cavities can be complex and time-consuming, particularly when dealing with conditions that vary. In such situations, machine learning (ML) and deep learning (DL) techniques provide effective alternatives. This study concentrates on constructing a prediction model based on the performance of ML and DL algorithms that can be applied in real-world settings. The efficacy of eight algorithms, including Regression Analysis, k-Nearest Neighbor, Decision Tree, Random Forest, Multivariate Regression Spline, Artificial Neural Network, and Deep Neural Network, was evaluated. Using a Python-assisted automation technique integrated with the PLAXIS 2D platform, a dataset containing 272 cases with eight input parameters and one target variable was generated. In general, the DL model performed better than the ML models, and all models, except the regression models, attained outstanding results with an R2 greater than 0.90. These models can also be used as surrogate models in reliability analysis to evaluate failure risks and probabilities.

이차모멘트 난류모델을 사용한 성층화된 자연대류 유동 해석 (ANALYSIS OF A STRATIFIED NATURAL CONVECTION FLOW WITH THE SECOND-MOMENT CLOSURE)

  • 최석기;김성오
    • 한국전산유체공학회지
    • /
    • 제12권3호
    • /
    • pp.55-61
    • /
    • 2007
  • A computational study on a strongly stratified natural convection is performed with the elliptic blending second-moment closure. The turbulent heat flux is treated by both the algebraic flux model (AFM) and the differential flux model (DFM). Calculations are performed for a turbulent natural convection in a square cavity with conducting top and bottom walls and the calculated results are compared with the available experimental data. The results show that both the AFM and DFM models produce very accurate solutions with the elliptic-blending second-moment closure without invoking any numerical stability problems. These results show that the AFM and DFM models for treating the turbulent heat flux are sufficient for this strongly stratified flow. However, a slight difference between two models is observed for some variables.

Ellipting Blending Model을 사용하여 자연대류 해석 시 난류 열유속 처리법 비교 (COMPARISON OF THE TREATMENTS OF TURBULENT HEAT FLUX FOR NATURAL CONVECTION WITH THE ELLIPTIC BLENDING SECOND MOMENT CLOSURE)

  • 최석기;김성오
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 춘계 학술대회논문집
    • /
    • pp.171-176
    • /
    • 2007
  • A comparative study on the treatment of the turbulent heat flux with the elliptic mlending second moment closure for a natural convection is performed. Four cases of different treating the turbulent heat flux are considered. Those are the generalized gradient diffusion hypothesis (GGDH) the algebraic flux model (AFM) and the differential heat flux model (DFM). These models are implemented in the computer code specially designed for evaluation of turbulent models. Calculations are performed for a turbulent natural convection in the 1:5 rectangular cavity and the calculated results are compared with the experimental data. The results show that three models produce nearly the same accuracy of solutions.

  • PDF

TV 세트의 스피커에 의한 소음 대책 설계 (Noise Reduction of Mono Type TV Sets Induced by Speaker)

  • 김종연;이중근;김재환;박상덕;최진성;박종성
    • 소음진동
    • /
    • 제9권4호
    • /
    • pp.730-737
    • /
    • 1999
  • This paper illustrates the sound vibration phenomenon of mono type TV set produced by spearker and suggests guidelines for reducing the noise induced by the sound vibrations. In order to illustrate the sound vibration phenomenon, the structural acoustic coupled analysis for the grill and cavity of speaker and structural analysis for main frame are performed. To veify the structural analysis results, experimental modal test is carried out. It is found that the acoustic excitation in the cavity is negligible and main sound vibrations occur near the bottom of TV set. An improved model is found by doing structural modifications based on structural analysis and sound vibration tests are performed to verify the validation of the improved model. The obtained results are applied to similar models and design guide lines for noise reduction are suggested.

  • PDF

Prediction of pressure equalization performance of rainscreen walls

  • Kumar, K. Suresh;van Schijndel, A.W.M.
    • Wind and Structures
    • /
    • 제2권4호
    • /
    • pp.325-345
    • /
    • 1999
  • In recent years, rainscreen walls based on the pressure equalization principle are often used in building construction. To improve the understanding of the influence of several design parameters on the pressure equalization performance of such wall systems, a theoretical consideration of the problem may be more appropriate. On this basis, this paper presents two theoretical models, one based on mass balance and the other based on the Helmholtz resonator theory, for the prediction of cavity pressure in rigid rainscreen walls. New measures to assess the degree of pressure equalization of rainscreen walls are also suggested. The results show that the model based on mass balance is sufficiently accurate and efficient in predicting the cavity pressure variations. Further, the performance of the proposed model is evaluated utilizing the data obtained from full-scale tests and the results are discussed in detail.

반용융 알루미늄 합금의 Thixoforming 공정에서 점도의 변화가 유도특성에 미치는 영향 (Effect of Viscosity Variation on Flow Characteristic in Thixoforming Process of Semi-Solid Aluminium Alloys)

  • 강충길;이유철
    • 소성∙가공
    • /
    • 제8권2호
    • /
    • pp.188-199
    • /
    • 1999
  • Semi-Solid Forming Process(Thixoforming, Rheocasting) is a novel forming process which has some advantages compared with conventional die casting, squeeze casting and hot/cold forging. In this study. Thixoforming process was selected as analysis processing in terms of billet handling and easiness of automation process. The Thixoforming process consists of reheating process of billet, billet handling, filling inot the die cavity and solidification of SSM part. In filling process, two rheology models which were Newtonian and Non-Nettonian model (Ostwald-deWaele)were verified with experimental results. The Ostwald-deWaele model shows the good agreement to the real flow and filling phenomena in die cavity. To give a boost the economical efficiency of Thixoforming process and to ensure the good forming result, reheating device coupled die set was proposed and the initial billet temperature for system that was found from experimental resluts. This study presents an overview of application of numerical analysis for simulation of semi-solid metal forming process to reduce the lead time for development of manufacturing part in industrial field.

  • PDF

Flexible multimode pressure sensor based on liquid metal

  • Zhou, Xiaoping;Yu, Zihao
    • Smart Structures and Systems
    • /
    • 제28권6호
    • /
    • pp.839-853
    • /
    • 2021
  • In this paper, a novel multimode liquid metal-based pressure sensor is developed. The main body of the sensor is composed of polydimethylsiloxane (PDMS) elastomer. The structure of the sensor looks like a sandwich, in which the upper structure contains a cylindrical cavity, and the bottom structure contains a spiral microchannel, and the middle partition layer separates the upper and the bottom structures. Then, the liquid metal is injected into the top cavity and the bottom microchannel. Based on linear elastic fracture mechanics, the deformation of the microchannel cross-section is theoretically analyzed. The changes of resistance, capacitance, and inductance of the microchannel under pressure are deduced, and the corresponding theoretical models are established. The theoretical values of the pressure sensor are in good agreement with experimental data, implying that the developed theoretical model can explain the performance of the sensor well.

Elemental analysis of caries-affected root dentin and artificially demineralized dentin

  • Sung, Young-Hye;Son, Ho-Hyun;Yi, Keewook;Chang, Juhea
    • Restorative Dentistry and Endodontics
    • /
    • 제41권4호
    • /
    • pp.255-261
    • /
    • 2016
  • Objectives: This study aimed to analyze the mineral composition of naturally- and artificially-produced caries-affected root dentin and to determine the elemental incorporation of resin-modified glass ionomer (RMGI) into the demineralized dentin. Materials and Methods: Box-formed cavities were prepared on buccal and lingual root surfaces of sound human premolars (n = 15). One cavity was exposed to a microbial caries model using a strain of Streptococcus mutans. The other cavity was subjected to a chemical model under pH cycling. Premolars and molars with root surface caries were used as a natural caries model (n = 15). Outer caries lesion was removed using a carbide bur and a hand excavator under a dyeing technique and restored with RMGI (FujiII LC, GC Corp.). The weight percentages of calcium (Ca), phosphate (P), and strontium (Sr) and the widths of demineralized dentin were determined by electron probe microanalysis and compared among the groups using ANOVA and Tukey test (p < 0.05). Results: There was a pattern of demineralization in all models, as visualized with scanning electron microscopy. Artificial models induced greater losses of Ca and P and larger widths of demineralized dentin than did a natural caries model (p < 0.05). Sr was diffused into the demineralized dentin layer from RMGI. Conclusions: Both microbial and chemical caries models produced similar patterns of mineral composition on the caries-affected dentin. However, the artificial lesions had a relatively larger extent of demineralization than did the natural lesions. RMGI was incorporated into the superficial layer of the caries-affected dentin.

치아파절에 관한 3차원유한요소법적 연구 (A STUDY ON TOOTH FRACTURE WITH THREE DIMENSIONAL FINITE ELEMENT METHOD)

  • 조병훈;엄정문
    • Restorative Dentistry and Endodontics
    • /
    • 제18권2호
    • /
    • pp.291-316
    • /
    • 1993
  • Restorative procedures can lead to tooth fracture due to the relatively small amount of the remaining tooth structure. It is essential to prevent fractures by having a clear concept of the designs for cavity preparations. Among the several parameters in cavity designs, profound understanding of isthmus width factor would facilitate selection of the appropriate cavity preparation for a specific clinical situation. In this study, MO amalgam cavity were prepared on maxillary first premolar and filled with amalgam. Three dimensional, model with 1365 8-node brick elements was made by serial photographic method. In this model, isthmus was varied in width at 1/4, 1/3, 1/2 and 2/3 of intercuspal width and material properties were given for three element groups, i.e., enamel, dentin and amalgam. A load of 500 N was applied vertically on amalgam and enamel. In case of enamel loading, 2 model (with and without amalgam) was compared to consider the possibility of play at the interface between tooth material and amalgam. These models were analyzed with three dimensional finite element method. The results were as follows: 1. The stress was concentrated on the facio-pulpal line angle and distal marginal ridge of the cavity. 2. With the increase of the isthmus width, the stress spread around the facio-pulpal line angle and the area of stress concentration moved toward the proximal box. 3. In case of narrow isthmus width, the initiation point of crack would be in the area of isthmus corner of the cavity, and with the increase of the isthmus width, it would move toward the proximal box and at the same time the possibility of crack increase at the distal marginal ridge. 4. The direction of crack progressed outward and downward from the facio-pulpal line angle, and with the increase of the isthmus width, it approximated vertical direction. At the marginal ridge, it occurred in vertical direction. 5. It would be favorable to make the isthmus width narrower than a third of the intercuspal width, and to cover the cusp if isthmus width were wider than half of the intercuspal width. 6. It is necessary to apply the possibility of play to the finite element analysis.

  • PDF