• Title/Summary/Keyword: Cavitation number

Search Result 176, Processing Time 0.03 seconds

Cavitation signal detection based on time-series signal statistics (시계열 신호 통계량 기반 캐비테이션 신호 탐지)

  • Haesang Yang;Ha-Min Choi;Sock-Kyu Lee;Woojae Seong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.4
    • /
    • pp.400-405
    • /
    • 2024
  • When cavitation noise occurs in ship propellers, the level of underwater radiated noise abruptly increases, which can be a critical threat factor as it increases the probability of detection, particularly in the case of naval vessels. Therefore, accurately and promptly assessing cavitation signals is crucial for improving the survivability of submarines. Traditionally, techniques for determining cavitation occurrence have mainly relied on assessing acoustic/vibration levels measured by sensors above a certain threshold, or using the Detection of Envelop Modulation On Noise (DEMON) method. However, technologies related to this rely on a physical understanding of cavitation phenomena and subjective criteria based on user experience, involving multiple procedures, thus necessitating the development of techniques for early automatic recognition of cavitation signals. In this paper, we propose an algorithm that automatically detects cavitation occurrence based on simple statistical features reflecting cavitation characteristics extracted from acoustic signals measured by sensors attached to the hull. The performance of the proposed technique is evaluated depending on the number of sensors and model test conditions. It was confirmed that by sufficiently training the characteristics of cavitation reflected in signals measured by a single sensor, the occurrence of cavitation signals can be determined.

NUMERICAL METHODS FOR CAVITATING FLOW

  • SHIN Byeong Rog
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.1-9
    • /
    • 2001
  • In this paper, some numerical methods recently developed for gas-liquid two-phase flows are reviewed. And then, a preconditioning method to solve cavitating flow by the author is introduced. This method employs a finite-difference Runge-Kutta method combined with MUSCL TVD scheme, and a homogeneous equilibrium cavitation model. So that it permits to treat simply the whole gas-liquid two-phase flow field including wave propagation, large density changes and incompressible flow characteristic at low Mach number. Finally, numerical results such as detailed observations of the unsteady cavity flows, a sheet cavitation break-off phenomena and some data related to performance characteristics of hydrofoils are shown.

  • PDF

Numerical analysis for supercavitating flows around axisymmetric cavitators

  • Kwack, Young Kyun;Ko, Sung Ho
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.3
    • /
    • pp.325-332
    • /
    • 2013
  • Diffuse interface model for numerical analysis was used to compute supercavitating flows around various cavitators. The ambient pressures of 2 atm permitted cavitation studies in a range of cavitation number, ${\sigma}=0.1$ to 1.0 on selected conical and disk-headed cavitors. The computed results were compared with relation by Reichardt. Drag coefficient obtained from pressure forces acting on the cavitator also compared well with those obtained from analytical relations.

Studies on Planing Avoidance Control for a Ventilated Supercavitating Vehicle (분사형 초공동 수중운동체의 Planing 회피에 대한 연구)

  • Park, Jongyeol;Kim, Seonhong;Kim, Nakwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.3
    • /
    • pp.201-209
    • /
    • 2016
  • Supercavitation is a technology that reduces frictional resistance of an underwater vehicle by surrounding it with bubbles. Supercavity is divided into natural supercavity and ventilated supercavity which is formed by artificially supplying gas. Planing forces are present when a section of the underwater vehicle goes outside of the cavitation region in the supercavity condition. Planing often leads to an unstable flight because it acts vertically on the body suddenly. In this paper, a relationship between the ventilation rate and the cavitation number is determined. Based on the relationship, desired cavitation number which can avoid to planing is determined and then ventilation controller is designed. The performance of the ventilation controller is verified with a depth change controller using the cavitator. Simulation results show that the ventilation controller can minimize the planing force and moment.

The Effect of Divergence Angle on the Control Valve Trim Characteristics (확산각이 밸브 트림 특성에 미치는 영향)

  • Go, Tae-Sig;Kim, Kuisoon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.1
    • /
    • pp.32-39
    • /
    • 2013
  • The multi-stage control valve is one of the devices which controls cavitation and high pressure drop. To attain the high pressure drop, the conventional control valves adopted the multi-stage trim to avoid the occurrence of local cavitation in valves. This work studied the effect of divergence angle on the characteristics of multi-stage trim. Pressure drop and flow characteristics was calculated for the 1 passage of multi-staged trim by using the FLUENT 6.3.26. The result showed that the pressure drop is significantly influenced by the divergence angle of multi-stage trim. In addition, the pressure drop increased consistently as the Reynolds number and divergence angle increases.

A High Resolution Scheme for Cavitating Flow

  • Shin B. R.;Oh S. J.;Obayashi S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.169-177
    • /
    • 2005
  • A high resolution scheme for solving gas-liquid two-phase flows with cavitation is described. This scheme uses the curvilinear coordinate grid and solves the density based momentum equations for mixture of gas-liquid medium with a preconditioning method to treat both compressible and incompressible flow characteristics. The present preconditioned method is based on the Runge-Kutta explicit finite-difference scheme, and is improved by using the diagonalization, the flux difference splitting and the MUSCL-TVD schemes to save computational effort and to increase stability and resolvability, especially at gas-liquid contact surfaces. A homogeneous equilibrium cavitation model is used to treat the gas-liquid two-phase medium in cavitating flow as a locally homogeneous pseudo-single-phase medium. Therefore, it is easy to solve cavitating flow, including wave propagation, large density changes and incompressible flow characteristic at low Mach number. Some numerical results obtained by the present scheme are shown.

  • PDF

TWO DIMENSIONAL SIMULATION OF UNSTEADY CAVITATING FLOW IN A CASCADE

  • Kajishima T.;Ohta T.;Shin B. R.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.179-182
    • /
    • 2005
  • We have developed a numerical scheme to reproduce the unsteady flows with cavitation by the finite-difference method. The evolution of cavitation is represented by the source/sink of vapor phase in the incompressible liquid flow. The pressure-velocity coupling is based on the fractional-step method for incompressible fluid flows, in which the compressibility is taken into account through the low Mach number assumption. We applied our method for the cavitating flows in a two-dimensional cascade, which approximates the portion near the tip of inducer in liquid-fuel engine. Particular attention was focused on the influence of turbulence model in this report. Using an eddy viscosity model, although it was not an optimized one for our purpose, the agreement with the experimental observation was improved.

  • PDF

A Numerical Analysis of Internal Nozzle Flows Through the Multi-Fluid Model (다유체 모델을 이용한 노즐 내부 유동에 대한 수치적 연구)

  • Ryu, Bong-Woo;Lee, Chang-Sik
    • Journal of ILASS-Korea
    • /
    • v.16 no.4
    • /
    • pp.186-194
    • /
    • 2011
  • This study performed the numerical analysis of the internal nozzle flows including cavitation phenomena by using the automated body-fitted grid generator and the multi-fluid model. The effect of grid refinement and the validation of multifluid model were investigated using four computational meshes under two test conditions. The mesh #3 was chosen as the optimum which can reduce the computational time and have good prediction ability to identify the cavitation region simultaneously. In addition, the computed results using multi-fluid model were compared with the reference experimental observations and numerical simulation results using homogeneous equilibrium model. From the distribution of volume fraction and velocity field, the multi-fluid model predicted the internal nozzle flows well when the liquid quality parameters were selected as $1.0{\times}10^{12}$ for initial number density and 25 ${\mu}m$ for bubble diameter.

Inclination angle influence on noise of cavitating marine propeller

  • Bal, Sakir
    • Ocean Systems Engineering
    • /
    • v.10 no.1
    • /
    • pp.49-65
    • /
    • 2020
  • In this study, the effects of inclined shaft angle on the hydro-acoustic performance of cavitating marine propellers are investigated by a numerical method developed before and Brown's empirical formula. The cavitating blades are represented by source and vortex elements. The cavity characteristics of the blades such as cavitation form, cavity volume, cavity length etc., are computed at a given cavitation number and at a set advance coefficient. A lifting surface method is applied for these calculations. The numerical lifting surface method is validated with experimental results of DTMB 4119 model benchmark propeller. After calculation of hydrodynamic characteristics of the cavitating propeller, noise spectrum and overall sound pressure level (OASPL) are computed by Brown's equation. This empirical equation is also validated with another numerical results found in the literature. The effects of inclined shaft angle on thrust coefficient, torque coefficient, efficiency and OASPL values are examined by a parametric study. By modifying the inclination angles of propeller, the thrust, torque, efficiency and OASPL are computed and compared with each other. The influence of the inclined shaft angle on cavity patterns on the blades are also discussed.

Numerical Study of Diesel Atomization Device for Fuel Activation (연료 활성화를 위한 디젤 미립화 장치의 수치해석 연구)

  • Choi, Sang In;Feng, Jia Ping;Seo, Ho Seok;Kim, Sang Bum;Jo, Young Min
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.4
    • /
    • pp.306-318
    • /
    • 2017
  • Heavy diesel vehicles are one of major sources of urban fine dust in Korea and other developing countries. In this study, an auxiliary device assisting fuel atomization, which is called FAD (Fuel Activation Device), was closely reviewed through numerical simulation. As calculated, the diesel flow velocity passing across FAD increased up to 1.68 times, and it enhanced the cavitation effect which could improve the injected fuel atomization. Super cavitation phenomenon, which is the most important effect on nozzle injection, has occurred until the cavitation number (${\sigma}$) decreased from 1.15 to 1.09, and atomized droplets via a nozzle of which opening was $500{\mu}m$ distributed less than $200{\mu}m$ in sauter mean diameter (SMD).