• Title/Summary/Keyword: Cavitation Erosion

Search Result 155, Processing Time 0.025 seconds

Development of Inspection Methodology for a Nuclear Piping Wall Thinning Caused by Erosion Using Ultrasonic B-Scan Measurement Device (B-Scan 초음파 측정장비를 이용한 원전 배관 침식손상 검사법 개발)

  • Lee, Dae Young;Suh, Heok Ki;Hwang, Kyeong Mo
    • Corrosion Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.89-95
    • /
    • 2012
  • U.S. Electric Power Research Institute (EPRI) has developed CHECWORKS program and applied it to power plant piping lines since some lines were ruptured by flow-accelerated corrosion (FAC) in 1978. Nowadays the CHECWORKS program has been used to manage pipe wall thinning phenomena caused by FAC. However, various erosion mechanisms can occur in carbon-steel piping. Most common forms of erosion are cavitation, flashing, liquid droplet impingement erosion (LDIE), and Solid Particle Erosion (SPE). Those erosion mechanisms cause pipe wall thinning, leaking, rupturing, and even result in unplanned shutdowns of utilities. Especially, in two phase condition, LDIE damages a wide scope of plant pipelines. Furthermore, LDIE is the major culprit to cause such as power runback by pipe leaking. This paper describes the methodologies that manage wall thinning and also predict LDIE wall thinning area. For this study, current properties of two-phase condition are investigated and LDIE areas are selected. The areas are checked by B-Scan method to detect the effect of wall thinning phenomena.

Evaluation of Cavitation Characteristics in Seawater on HVOF Spray Coated Layer with WC-27NiCr Material for Cu Alloy (구리합금에 대한 WC-27NiCr 초고속화염용사 코팅층의 해수내 캐비테이션 특성 평가)

  • Han, Min-Su;Kim, Min-Sung;Jang, Seok-Ki;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.263-269
    • /
    • 2012
  • Copper alloys are commonly applied to ship's propellers, pumps and valves which are serviced in seawater due to their good castability and corrosion resistance. In the environment of high flow velocity, however, erosion damage predominates over corrosion damage. In particular, the cavitation in seawater environment accelerates surface damage to copper alloys, resulting in degradation of products and economic losses and also threatening safety. The surface was coated with WC-27NiCr by high velocity oxygen fuel(HVOF) spraying technique to attain durability and cavitation resistance of copper alloys under high velocity/pressure flow. The cavitation test was performed for the WC-27NiCr coating deposited by HVOF in seawater at the amplitude of $30{\mu}m$ with seawater temperature. The cavitation at $15^{\circ}C$ caused exfoliation of the coating layer in 17.5 hours while that of $25^{\circ}C$ caused the exfoliation in 12.5 hours. When the temperature of seawater was elevated to $25^{\circ}C$ from $15^{\circ}C$, more damage was induced by over 160%. Although WC-27NiCr has good durability, corrosion resistance and eletrochemical stability, the cavitation damage rate of the coating layer could remarkably increase at the elevated temperatures under cavitation environments.

Effect of cavitation for electrochemical characteristics in seawater for austenitic 304 stainless steel (오스테나이트계 STS 304강의 해수 내 전기화학적 특성에 미치는 캐비테이션의 영향)

  • Kim, Seong-Jong;Lee, Seung-Jun;Chong, Sang-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.484-492
    • /
    • 2013
  • With the industrial acceleration in a lot of countries of the world, the demand for anti-corrosion and anti-abrasion material increases continuously. Particularly, stainless steel with the fine surface and excellent corrosion resistance is widely used in various industrial fields including ship, offshore structures tidal power plant, and etc. In marine environment, however, it is easy to generate by the corrosion damage by $Cl^-$ ion and cavitation damage due to high rotation speed on stainless steel. Therefore, in this research, the cavitation erosion-corrosion test (Hybrid test) was performed for 304 stainless steel specimen used in the high flow rate seawater environment. And the cavitation damage behavior in the corrosive environment was analyzed overall. The high hardness was shown due to the formation of compressive residual stress by the water cavitation peening effect in cavitation condition. However, high current density in the potentiodynamic polarization experiment presented with the breakdown of the passive film caused by physical impact. Therefore, both electrochemical characteristics and mechanical properties must be taken into account to improve the cavitation resistance in seawater.

A Study for the Effect of Liquid Droplet Impingement Erosion on the Loss of Pipe Flow Materials (배관 재질 손상에 미치는 액적충돌침식의 영향에 대한 연구)

  • Kim, Kyung Hoon;Cho, Yun Su;Kim, Hyung Joon
    • Journal of ILASS-Korea
    • /
    • v.18 no.1
    • /
    • pp.9-15
    • /
    • 2013
  • Wall thinning of pipeline in power plants occurs mainly by flow acceleration corrosion (FAC), cavitation erosion (C/E), liquid droplet impingement erosion (LDIE). Wall thinning by FAC and C/E has been well investigated; however, LDIE in plant industries has rarely been studied due to the experimental difficulty of setting up a long injection of highly-pressurized air. In this study, we designed a long-term experimental system for LDIE and investigate the behavior of LDIE for three kinds of materials (A106B, SS400, A6061). The main control parameter was the air-water ratio (${\alpha}$), which was defined as the volumetric ratio of water to air (0.79, 1.00, 1.72). In order to clearly understand LDIE, the spraying velocity (${\nu}$) of liquid droplets was controled larger then 160 m/s and the experiments were performed for 15 days. Therefore, this research focuses relation between erosion rate and air-water ratio on the various pipe-flow materials. NPP(nuclear power plant)'s LDIE prediction theory and management technique were drawn from the obtained data.

Electrochmical Characteristics by Water Cavitation Peening of Cu Alloy (워터캐비테이션피닝된 동합금의 전기화학적 특성평가)

  • Kim, Seong-Jong;Han, Min-Su;Kim, Min-Sung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.8
    • /
    • pp.1083-1090
    • /
    • 2012
  • Copper alloys are widely used for casting materials including ship's propellers and pump impellers as they provide high corrosion resistance. In addition, the demand for these alloys is increasing with rapid growth of offshore structures and exploitation of various substitute energy sources. However, they require regular maintenance because of erosion and cavitation damages induced by exposure to marine environment at high speed flows for a long period of time. Water cavitation peening have received attention as one of surface modifications for durability improvement of the copper alloys. This is a environment friendly technology without influence of heat and easily applicable to casting materials. In this research, water cavitation peening was employed in distilled water for copper alloy castings as a function of time and evaluation of corrosion resistance was followed in seawater for the modified surface by using electrochemical methods. The result suggests that the water cavitation peening for 2 minutes was found to be the optimal peening parameter in terms of durability and corrosion resistance.

Ultrasonic Deburring Technology Using abrasive (지립을 이용한 초음파 디버링 기술)

  • 최헌종;이석우;최영재;고성림
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1848-1852
    • /
    • 2003
  • Generally, burrs refer to projected parts remained on the edge after material had been processed. These burrs decrease the precision of part and cause many problems in part assembly. Burrs are undesirable projections of the material beyond the edge of the workpiece. A number of deburring processes have been developed such as barreling, brushing, chemical methods etc. But, there are a few publications in the area of applying ultrasonics to deburring. When ultrasonic vibration propagates in the liquid medium, a large number of bubbles are formed. These bubbles generate an extremely strong force, which removes burrs. Cavitations were used as a term to describe erosion of parts caused by the action of cavities in liquid. The object of this study is to analyze the effects of ultrasonic cavitation in deburring process. For this purpose, we introduce a new ultrasonic cavitation method with abrasive, which efficiently removes the burrs. Experimental parameters to verify the deburring effects of ultrasonic cavitations are ultrasonic power, amplitude, distant of the transducer from the workpiece, deburring time and abrasive. It has been shown that deburring with ultrasonic cavitation in water is effective to burrs.

  • PDF

Prediction of the Propeller Face Cavity Inception and Experimental Verification (프로펠러 압력면 캐비테이션의 초기발생 추정 및 실험 검증)

  • Ahn, Byoung-Kwon;Lee, Chang-Sup;Yu, Yong-Wan;Moon, Il-Sung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.5
    • /
    • pp.467-473
    • /
    • 2007
  • Cavitation phenomena appearing on ship propellers have long been interested and recent theoretical analysises give good results comparing with model tests. In accordance with a continuous rise in heavy powered and high speed ships, hull forms have been changed and loads acting on the propeller surface have also been increased, and they result in various and particular cavitations. In some cases, cavitation appears not only on the back but also on the face of the propeller and it causes additive pressure fluctuations and erosion of the propeller and reduces propulsion efficiency of the ship. In this study, we predict the face cavity inception using unsteady propeller analysis based on the panel method and compare the results with experimental observations.

Sonochemical and Sonophysical Effects in a Downward-Irradiation Sonoreactor (하향 초음파 조사 시스템에서의 초음파 화학적 및 물리적 효과 평가)

  • Kim, Seulgi;Son, Younggyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.3
    • /
    • pp.23-31
    • /
    • 2020
  • The performance of a downward-irradiation sonoreactor was investigated using calorimetry, KI dosimetry, luminol (Sonochemiluminescence, SCL) method, and aluminium foil erosion method as one of the basic steps for the optimal design of downward-irradiation sonoreactors. The applied frequency was 28 kHz and the input electrical power was 280 - 300 W. The liquid height, from the reactor bottom to the transducer module surface, ranged from 1λ (53.6 mm) to 2λ (107.1 mm). For various liquid heights, the magnitude of calorimetric power and the mass of cavitation-generated I3- ion varied significantly. It was found that the additional application of mechanical mixing resulted in higher sonochemical activity, especially in the cavitational active zone, which was induced by violent liquid flow in the reactor. In aluminium foil erosion tests, it was found that less ultrasound energy reached the bottom of the reactor due to the violent liquid flow and no significant sonophysical effect was observed for higher mixing rate conditions (100 and 200 rpm).

Acoustically-enhanced particle dispersion in polystyrene/alumina nanocomposites

  • Philip, Mercy A.;Natarajan, Upendra;Nagarajan, Ramamurthy
    • Advances in nano research
    • /
    • v.2 no.2
    • /
    • pp.121-133
    • /
    • 2014
  • Polymer nanocomposites are advanced nanomaterials which exhibit dramatic improvements in various mechanical, thermal and barrier properties as compared with the neat polymer. Polystyrene/ alumina nanocomposites were prepared by an ultrasound-assisted solution casting method at filler loadings ranging from 0.2 to 2% and also at different ultrasonic frequencies, viz. 58 kHz, 192/58 kHz, 430 kHz, 470 kHz and 1 MHz. The composites were subjected to mechanical property tests (tensile and impact tests) and cavitation erosion tests to study the enhancement in functional properties. Filler dispersion in the polymer matrix was observed by SEM analysis. The effect of frequency on filler dispersion in the matrix was studied by SEM analysis and functional property enhancement of the composite material. The composites prepared at dual (high/ low) frequency (192/58 kHz) were found to show better property enhancement at low filler loadings as compared with neat polymer and also with composites prepared without ultrasound, thus reinforcing the finding that ultrasound-assisted synthesis is a promising method for the synthesis of nanocomposites.

Ultrastructural Observation of Bacterial Attacks on the Waterlogged Archaeological Woods (세균에 의한 수침고목재 피해양태의 초미시구조적 관찰)

  • Kim, Y.S.;Choi, J.H.;Bae, H.J.;Nilsson, T.;Daniel, G.
    • Journal of Conservation Science
    • /
    • v.1 no.1 s.1
    • /
    • pp.3-11
    • /
    • 1992
  • Micromorphological changes in waterlogged archaeological woods excavated from Sweden and Germany were investigated. Especially bacterial attacks on those wood samples under near anaerobic conditions were examined by transmission electron microscopy(TEM). The major feature of micromorphological alterations in those wood samples was the preferential destruction of secondary wood cell wall. In contrast, the middle lamella was not extensively degraded. Three distinct degradation patterns by bacteria were observed : erosion, cavitation and tunnelling bacteria. Erosion and cavitation bacteria attacked primarily $S_2$ layer, whereas tunnelling bacteria made the tunnel-like degradation along the $S_1$ layer. Tunnelling bacteria, in some samples, were able to degrade tunnel in the lignin-rich areas, such as middle lamella, suggesting that these bacteria had the capacity to degrade the lignin. IR spectra indicate that hemicellulose and cellulose in the waterlogged woods were preferentially decomposed. Breakdown of the lignin, on the other hand, was much slower.

  • PDF